The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical method for correlated many-electron systems, which is being increasingly applied in lattice models, atoms, molecules, and solids. Here, we introduce the theory and algorithm of the method specialized for real materials and present several recent developments. We give a systematic exposition of the key steps of AFQMC, closely tracking the framework of a modern software library we are developing. The building of a Monte Carlo Hamiltonian, projecting to the ground state, sampling two-body operators, phaseless approximation, and measuring ground state properties are discussed in detail. An advanced implementation for multi-determinant trial wave functions is described, which dramatically speeds up the algorithm and reduces the memory cost. We propose a self-consistent constraint for real materials, and discuss two flavors for its realization, either by coupling the AFQMC calculation to an effective independent-electron calculation or via the natural orbitals of the computed one-body density matrix.

1.
R. M.
Martin
,
Electronic Structure: Basic Theory and Practical Methods
(
Cambridge University Press
,
2004
).
2.
W.
Kohn
, “
Nobel lecture: Electronic structure of matter—wave functions and density functionals
,”
Rev. Mod. Phys.
71
,
1253
1266
(
1999
).
3.
M. H.
Kalos
,
D.
Levesque
, and
L.
Verlet
, “
Helium at zero temperature with hard-sphere and other forces
,”
Phys. Rev. A
9
,
2178
2195
(
1974
).
4.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
,
33
83
(
2001
).
5.
D. M.
Ceperley
, “
Path integrals in the theory of condensed helium
,”
Rev. Mod. Phys.
67
,
279
355
(
1995
).
6.
R.
Blankenbecler
,
D. J.
Scalapino
, and
R. L.
Sugar
, “
Monte Carlo calculations of coupled boson-fermion systems. I
,”
Phys. Rev. D
24
,
2278
2286
(
1981
).
7.
S.
Zhang
and
H.
Krakauer
, “
Quantum Monte Carlo method using phase-free random walks with slater determinants
,”
Phys. Rev. Lett.
90
,
136401
(
2003
).
8.
K. E.
Schmidt
and
M. H.
Kalos
, “
Few-and many-fermion problems
,” in
Applications of the Monte Carlo Method in Statistical Physics
, edited by
K.
Binder
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1984
), pp.
125
143
.
9.
E. Y.
Loh
,
J. E.
Gubernatis
,
R. T.
Scalettar
,
S. R.
White
,
D. J.
Scalapino
, and
R. L.
Sugar
, “
Sign problem in the numerical simulation of many-electron systems
,”
Phys. Rev. B
41
,
9301
9307
(
1990
).
10.
S.
Zhang
, “
Finite-temperature Monte Carlo calculations for systems with fermions
,”
Phys. Rev. Lett.
83
,
2777
2780
(
1999
).
11.
S.
Zhang
, “
Auxiliary-field quantum Monte Carlo for correlated electron systems
,” in
Emergent Phenomenon in Correlated Matter: Modeling and Simulation
(
Verlag
,
2013
).
12.
W. A.
Al-Saidi
,
S.
Zhang
, and
H.
Krakauer
, “
Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis
,”
J. Chem. Phys.
124
,
224101
(
2006
).
13.
M.
Motta
and
S.
Zhang
, “
Ab initio computations of molecular systems by the auxiliary-field quantum Monte Carlo method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1364
(
2018
).
14.
H.
Hao
,
A.
Georges
,
A. J.
Millis
,
B.
Rubenstein
,
Q.
Han
, and
H.
Shi
, “
Metal-insulator and magnetic phase diagram of Ca2RuO4 from auxiliary field quantum Monte Carlo and dynamical mean field theory
,”
Phys. Rev. B
101
,
235110
(
2020
).
15.
S.
Zhang
,
J.
Carlson
, and
J. E.
Gubernatis
, “
Constrained path Monte Carlo method for fermion ground states
,”
Phys. Rev. B
55
,
7464
7477
(
1997
).
16.
H.
Hao
,
B. M.
Rubenstein
, and
H.
Shi
, “
Auxiliary field quantum Monte Carlo for multiband Hubbard models: Controlling the sign and phase problems to capture Hund’s physics
,”
Phys. Rev. B
99
,
235142
(
2019
).
17.
H.
Shi
and
S.
Zhang
, “
Many-body computations by stochastic sampling in Hartree-Fock-Bogoliubov space
,”
Phys. Rev. B
95
,
045144
(
2017
).
18.
M.
Suewattana
,
W.
Purwanto
,
S.
Zhang
,
H.
Krakauer
, and
E. J.
Walter
, “
Phaseless auxiliary-field quantum Monte Carlo calculations with plane waves and pseudopotentials: Applications to atoms and molecules
,”
Phys. Rev. B
75
,
245123
(
2007
).
19.
F.
Ma
,
W.
Purwanto
,
S.
Zhang
, and
H.
Krakauer
, “
Quantum Monte Carlo calculations in solids with downfolded Hamiltonians
,”
Phys. Rev. Lett.
114
,
226401
(
2015
).
20.
M.
Born
and
R.
Oppenheimer
, “
Zur quantentheorie der molekeln
,”
Ann. Phys.
389
,
457
484
(
1927
).
21.
A.
Szabo
and
N.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Dover Publications
,
1989
).
22.
N. H. F.
Beebe
and
J.
Linderberg
, “
Simplifications in the generation and transformation of two-electron integrals in molecular calculations
,”
Int. J. Quantum Chem.
12
,
683
705
(
1977
).
23.
H.
Koch
,
A.
Sánchez de Merás
, and
T. B.
Pedersen
, “
Reduced scaling in electronic structure calculations using Cholesky decompositions
,”
J. Chem. Phys.
118
,
9481
9484
(
2003
).
24.
F.
Aquilante
,
L.
De Vico
,
N.
Ferré
,
G.
Ghigo
,
P.-å.
Malmqvist
,
P.
Neogrády
,
T. B.
Pedersen
,
M.
Piton̆ák
,
M.
Reiher
,
B. O.
Roos
,
L.
Serrano-Andrés
,
M.
Urban
,
V.
Veryazov
, and
R.
Lindh
, “
MOLCAS 7: The next generation
,”
J. Comput. Chem.
31
,
224
247
(
2010
).
25.
W.
Purwanto
,
H.
Krakauer
,
Y.
Virgus
, and
S.
Zhang
, “
Assessing weak hydrogen binding on Ca centers: An accurate many-body study with large basis sets
,”
J. Chem. Phys.
135
,
164105
(
2011
).
26.
J.
Shee
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
Phaseless auxiliary-field quantum Monte Carlo on graphical processing units
,”
J. Chem. Theory Comput.
14
,
4109
(
2018
).
27.
P. R. C.
Kent
,
A.
Annaberdiyev
,
A.
Benali
,
M. C.
Bennett
,
E. J.
Landinez Borda
,
P.
Doak
,
H.
Hao
,
K. D.
Jordan
,
J. T.
Krogel
,
I.
Kylänpää
,
J.
Lee
,
Y.
Luo
,
F. D.
Malone
,
C. A.
Melton
,
L.
Mitas
,
M. A.
Morales
,
E.
Neuscamman
,
F. A.
Reboredo
,
B.
Rubenstein
,
K.
Saritas
,
S.
Upadhyay
,
G.
Wang
,
S.
Zhang
, and
L.
Zhao
, “
QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion quantum Monte Carlo
,”
J. Chem. Phys.
152
,
174105
(
2020
).
28.
M.
Motta
,
J.
Shee
,
S.
Zhang
, and
G. K.-L.
Chan
, “
Efficient ab initio auxiliary-field quantum Monte Carlo calculations in Gaussian bases via low-rank tensor decomposition
,”
J. Chem. Theory Comput.
15
,
3510
3521
(
2019
).
29.
M.
Suzuki
, “
Relationship between d-dimensional quantal spin systems and (d+1)-dimensional Ising systems equivalence, critical exponents and systematic approximants of the partition function and spin correlations
,”
Prog. Theor. Phys.
56
,
1454
1469
(
1976
).
30.
H. F.
Trotter
, “
On the product of semi-groups of operators
,”
Proc. Am. Math. Soc.
10
,
545
551
(
1959
).
31.
J.
Hubbard
, “
Calculation of partition functions
,”
Phys. Rev. Lett.
3
,
77
78
(
1959
).
32.
H.
Shi
and
S.
Zhang
, “
Symmetry in auxiliary-field quantum Monte Carlo calculations
,”
Phys. Rev. B
88
,
125132
(
2013
).
33.
H.
Shi
,
S.
Chiesa
, and
S.
Zhang
, “
Ground-state properties of strongly interacting Fermi gases in two dimensions
,”
Phys. Rev. A
92
,
033603
(
2015
).
34.
W.
Purwanto
and
S.
Zhang
, “
Correlation effects in the ground state of trapped atomic Bose gases
,”
Phys. Rev. A
72
,
053610
(
2005
).
35.
G.
Sugiyama
and
S. E.
Koonin
, “
Auxiliary field Monte-Carlo for quantum many-body ground states
,”
Ann. Phys.
168
,
1
26
(
1986
).
36.
J. E.
Hirsch
, “
Two-dimensional Hubbard model: Numerical simulation study
,”
Phys. Rev. B
31
,
4403
4419
(
1985
).
37.
S.
Sorella
,
S.
Baroni
,
R.
Car
, and
M.
Parrinello
, “
A novel technique for the simulation of interacting Fermion systems
,”
Europhys. Lett.
8
,
663
668
(
1989
).
38.
S. R.
White
,
D. J.
Scalapino
,
R. L.
Sugar
,
E. Y.
Loh
,
J. E.
Gubernatis
, and
R. T.
Scalettar
, “
Numerical study of the two-dimensional Hubbard model
,”
Phys. Rev. B
40
,
506
516
(
1989
).
39.
H.
Shi
and
S.
Zhang
, “
Infinite variance in fermion quantum Monte Carlo calculations
,”
Phys. Rev. E
93
,
033303
(
2016
).
40.
S.
Zhang
, “
Auxiliary-field quantum Monte Carlo at zero- and finite-temperatures
,” in
Many-Body Methods for Real Materials
(
Verlag
,
2019
).
41.
D. J.
Thouless
, “
Stability conditions and nuclear rotations in the Hartree-Fock theory
,”
Nucl. Phys.
21
,
225
232
(
1960
).
42.
D. J.
Thouless
, “
Vibrational states of nuclei in the random phase approximation
,”
Nucl. Phys.
22
,
78
95
(
1961
).
43.
H.
Shi
,
C. A.
Jiménez-Hoyos
,
R.
Rodríguez-Guzmán
,
G. E.
Scuseria
, and
S.
Zhang
, “
Symmetry-projected wave functions in quantum Monte Carlo calculations
,”
Phys. Rev. B
89
,
125129
(
2014
).
44.
J.
Carlson
,
S.
Gandolfi
,
K. E.
Schmidt
, and
S.
Zhang
, “
Auxiliary-field quantum Monte Carlo method for strongly paired fermions
,”
Phys. Rev. A
84
,
061602
(
2011
).
45.
W.
Purwanto
and
S.
Zhang
, “
Quantum Monte Carlo method for the ground state of many-boson systems
,”
Phys. Rev. E
70
,
056702
(
2004
).
46.
W.
Purwanto
,
H.
Krakauer
, and
S.
Zhang
, “
Pressure-induced diamond to β-tin transition in bulk silicon: A quantum Monte Carlo study
,”
Phys. Rev. B
80
,
214116
(
2009
).
47.
Y.-Y.
He
,
M.
Qin
,
H.
Shi
,
Z.-Y.
Lu
, and
S.
Zhang
, “
Finite-temperature auxiliary-field quantum Monte Carlo: Self-consistent constraint and systematic approach to low temperatures
,”
Phys. Rev. B
99
,
045108
(
2019
).
48.
J. P. F.
LeBlanc
,
A. E.
Antipov
,
F.
Becca
,
I. W.
Bulik
,
G. K.-L.
Chan
,
C.-M.
Chung
,
Y.
Deng
,
M.
Ferrero
,
T. M.
Henderson
,
C. A.
Jiménez-Hoyos
,
E.
Kozik
,
X.-W.
Liu
,
A. J.
Millis
,
N. V.
Prokof’ev
,
M.
Qin
,
G. E.
Scuseria
,
H.
Shi
,
B. V.
Svistunov
,
L. F.
Tocchio
,
I. S.
Tupitsyn
,
S. R.
White
,
S.
Zhang
,
B.-X.
Zheng
,
Z.
Zhu
,
E.
Gull
, and
Simons Collaboration on the Many-Electron Problem
, “
Solutions of the two-dimensional Hubbard model: Benchmarks and results from a wide range of numerical algorithms
,”
Phys. Rev. X
5
,
041041
(
2015
).
49.
B.-X.
Zheng
,
C.-M.
Chung
,
P.
Corboz
,
G.
Ehlers
,
M.-P.
Qin
,
R. M.
Noack
,
H.
Shi
,
S. R.
White
,
S.
Zhang
, and
G. K.-L.
Chan
, “
Stripe order in the underdoped region of the two-dimensional Hubbard model
,”
Science
358
,
1155
1160
(
2017
).
50.
M.
Motta
and
S.
Zhang
, “
Computation of ground-state properties in molecular systems: Back-propagation with auxiliary-field quantum Monte Carlo
,”
J. Chem. Theory Comput.
13
,
5367
5378
(
2017
).
51.
G. C.
Wick
, “
The evaluation of the collision matrix
,”
Phys. Rev.
80
,
268
272
(
1950
).
52.
R.
Balian
and
E.
Brezin
, “
Nonunitary bogoliubov transformations and extension of wick’s theorem
,”
Nuovo Cimento B
64
,
37
55
(
1969
).
53.
J.
Lee
and
D. R.
Reichman
, “
Stochastic resolution-of-the-identity auxiliary-field quantum Monte Carlo: Scaling reduction without overhead
,”
J. Chem. Phys.
153
,
044131
(
2020
).
54.
F. D.
Malone
,
S.
Zhang
, and
M. A.
Morales
, “
Overcoming the memory bottleneck in auxiliary field quantum Monte Carlo simulations with interpolative separable density fitting
,”
J. Chem. Theory Comput.
15
,
256
264
(
2019
).
55.
B. K.
Clark
,
M. A.
Morales
,
J.
McMinis
,
J.
Kim
, and
G. E.
Scuseria
, “
Computing the energy of a water molecule using multideterminants: A simple, efficient algorithm
,”
J. Chem. Phys.
135
,
244105
(
2011
).
56.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K. L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
57.
K. T.
Williams
,
Y.
Yao
,
J.
Li
,
L.
Chen
,
H.
Shi
,
M.
Motta
,
C.
Niu
,
U.
Ray
,
S.
Guo
,
R. J.
Anderson
,
J.
Li
,
L. N.
Tran
,
C.-N.
Yeh
,
B.
Mussard
,
S.
Sharma
,
F.
Bruneval
,
M.
van Schilfgaarde
,
G. H.
Booth
,
G. K.-L.
Chan
,
S.
Zhang
,
E.
Gull
,
D.
Zgid
,
A.
Millis
,
C. J.
Umrigar
,
L. K.
Wagner
, and
Simons Collaboration on the Many-Electron Problem
, “
Direct comparison of many-body methods for realistic electronic Hamiltonians
,”
Phys. Rev. X
10
,
011041
(
2020
).
58.
J.
Shee
,
B.
Rudshteyn
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
On achieving high accuracy in quantum chemical calculations of 3d transition metal-containing systems: A comparison of auxiliary-field quantum Monte Carlo with coupled cluster, density functional theory, and experiment for diatomic molecules
,”
J. Chem. Theory Comput.
15
,
2346
2358
(
2019
).
59.
B.
Rudshteyn
,
D.
Coskun
,
J. L.
Weber
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
,
R. A.
Friesner
, and
J.
Shee
, “
Predicting ligand-dissociation energies of 3d coordination complexes with auxiliary-field quantum Monte Carlo
,”
J. Chem. Theory Comput.
16
,
3041
3054
(
2020
).
60.
C.-C.
Chang
,
B. M.
Rubenstein
, and
M. A.
Morales
, “
Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations
,”
Phys. Rev. B
94
,
235144
(
2016
).
61.
M.
Qin
,
H.
Shi
, and
S.
Zhang
, “
Coupling quantum Monte Carlo and independent-particle calculations: Self-consistent constraint for the sign problem based on the density or the density matrix
,”
Phys. Rev. B
94
,
235119
(
2016
).
62.
Z.
Xiao
,
H.
Shi
, and
S.
Zhang
, “
A pseudo-BCS wavefunction from density matrix decomposition: Application in auxiliary-field quantum Monte Carlo
,”
Phys. Rev. Res.
(to be published); arXiv:2010.06055 [cond-mat.str-el] (
2020
).
63.
Y.
Virgus
,
W.
Purwanto
,
H.
Krakauer
, and
S.
Zhang
, “
Stability, energetics, and magnetic states of cobalt adatoms on graphene
,”
Phys. Rev. Lett.
113
,
175502
(
2014
).
64.
M.
Motta
,
D. M.
Ceperley
,
G. K.-L.
Chan
,
J. A.
Gomez
,
E.
Gull
,
S.
Guo
,
C. A.
Jiménez-Hoyos
,
T. N.
Lan
,
J.
Li
,
F.
Ma
,
A. J.
Millis
,
N. V.
Prokof’ev
,
U.
Ray
,
G. E.
Scuseria
,
S.
Sorella
,
E. M.
Stoudenmire
,
Q.
Sun
,
I. S.
Tupitsyn
,
S. R.
White
,
D.
Zgid
,
S.
Zhang
, and
Simons Collaboration on the Many-Electron Problem
, “
Towards the solution of the many-electron problem in real materials: Equation of state of the hydrogen chain with state-of-the-art many-body methods
,”
Phys. Rev. X
7
,
031059
(
2017
).
65.
M.
Motta
,
C.
Genovese
,
F.
Ma
,
Z.-H.
Cui
,
R.
Sawaya
,
G.
Kin-Lic Chan
,
N.
Chepiga
,
P.
Helms
,
C.
Jimenez-Hoyos
,
A. J.
Millis
,
U.
Ray
,
E.
Ronca
,
H.
Shi
,
S.
Sorella
,
E. M.
Stoudenmire
,
S. R.
White
,
S.
Zhang
, and Simons Collaboration on the Many-Electron Problem, “
Ground-state properties of the hydrogen chain: Insulator-to-metal transition, dimerization, and magnetic phases
,”
Phys. Rev. X
10
,
031058
(
2020
).
You do not currently have access to this content.