In this work, we provide a nuanced view of electron correlation in the context of transition metal complexes, reconciling computational characterization via spin and spatial symmetry breaking in single-reference methods with qualitative concepts from ligand-field and molecular orbital theories. These insights provide the tools to reliably diagnose the multi-reference character, and our analysis reveals that while strong (i.e., static) correlation can be found in linear molecules (e.g., diatomics) and weakly bound and antiferromagnetically coupled (monometal-noninnocent ligand or multi-metal) complexes, it is rarely found in the ground-states of mono-transition-metal complexes. This leads to a picture of static correlation that is no more complex for transition metals than it is, e.g., for organic biradicaloids. In contrast, the ability of organometallic species to form more complex interactions, involving both ligand-to-metal σ-donation and metal-to-ligand π-backdonation, places a larger burden on a theory’s treatment of dynamic correlation. We hypothesize that chemical bonds in which inter-electron pair correlation is non-negligible cannot be adequately described by theories using MP2 correlation energies and indeed find large errors vs experiment for carbonyl-dissociation energies from double-hybrid density functionals. A theory’s description of dynamic correlation (and to a less important extent, delocalization error), which affects relative spin-state energetics and thus spin symmetry breaking, is found to govern the efficacy of its use to diagnose static correlation.

1.
C. J.
Cramer
and
D. G.
Truhlar
, “
Density functional theory for transition metals and transition metal chemistry
,”
Phys. Chem. Chem. Phys.
11
,
10757
10816
(
2009
).
2.
K. D.
Vogiatzis
,
M. V.
Polynski
,
J. K.
Kirkland
,
J.
Townsend
,
A.
Hashemi
,
C.
Liu
, and
E. A.
Pidko
, “
Computational approach to molecular catalysis by 3d transition metals: Challenges and opportunities
,”
Chem. Rev.
119
,
2453
2523
(
2018
).
3.
P. E. M.
Siegbahn
and
M. R. A.
Blomberg
, “
Transition-metal systems in biochemistry studied by high-accuracy quantum chemical methods
,”
Chem. Rev.
100
,
421
438
(
2000
).
4.
N.
Mardirossian
and
M.
Head-Gordon
, “
Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals
,”
Mol. Phys.
115
,
2315
2372
(
2017
).
5.
M.
Reiher
, “
Relativistic Douglas–Kroll–Hess theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
139
149
(
2012
).
6.
F.
Neese
, “
Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations
,”
J. Chem. Phys.
122
,
034107
(
2005
).
7.
S. J.
Konezny
,
M. D.
Doherty
,
O. R.
Luca
,
R. H.
Crabtree
,
G. L.
Soloveichik
, and
V. S.
Batista
, “
Reduction of systematic uncertainty in DFT redox potentials of transition-metal complexes
,”
J. Phys. Chem. C
116
,
6349
6356
(
2012
).
8.
F.
Arrigoni
,
R.
Breglia
,
L. D.
Gioia
,
M.
Bruschi
, and
P.
Fantucci
, “
Redox potentials of small inorganic radicals and hexa-aquo complexes of first-row transition metals in water: A DFT study based on the grand canonical ensemble
,”
J. Phys. Chem. A
123
,
6948
6957
(
2019
).
9.
D. W.
Small
and
M.
Head-Gordon
, “
Post-modern valence bond theory for strongly correlated electron spins
,”
Phys. Chem. Chem. Phys.
13
,
19285
19297
(
2011
).
10.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Fractional spins and static correlation error in density functional theory
,”
J. Chem. Phys.
129
,
121104
(
2008
).
11.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Insights into current limitations of density functional theory
,”
Science
321
,
792
794
(
2008
).
12.
E. R.
Davidson
and
W. T.
Borden
, “
Symmetry breaking in polyatomic molecules: Real and artifactual
,”
J. Phys. Chem.
87
,
4783
4790
(
1983
).
13.
X.
Li
and
J.
Paldus
, “
A unitary group based open-shell coupled cluster study of vibrational frequencies in ground and excited states of first row diatomics
,”
J. Chem. Phys.
104
,
9555
9562
(
1996
).
14.
H.
Fukutome
, “
Unrestricted Hartree–Fock theory and its applications to molecules and chemical reactions
,”
Int. J. Quantum Chem.
20
,
955
1065
(
1981
).
15.
J.
Struber
and
J.
Paldus
,
Fundamental World of Quantum Chemistry
, A Tribute to the Memory of Per-Olov Löwdin Vol. III, edited by
E. J.
Brändas
and
E. S.
Kryachko
(
Kluwer Academic Publishers
,
Dordrecht
,
2003
), Vol. 1, pp.
67
139
.
16.
J. F.
Harrison
, “
Electronic structure of diatomic molecules composed of a first-row transition metal and main-group element (H-F)
,”
Chem. Rev.
100
,
679
716
(
2000
).
17.
F.
Furche
and
J. P.
Perdew
, “
The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry
,”
J. Chem. Phys.
124
,
044103
(
2006
).
18.
X.
Xu
,
W.
Zhang
,
M.
Tang
, and
D. G.
Truhlar
, “
Do practical standard coupled cluster calculations agree better than Kohn–Sham calculations with currently available functionals when compared to the best available experimental data for dissociation energies of bonds to 3d transition metals?
,”
J. Chem. Theory Comput.
11
,
2036
2052
(
2015
).
19.
E. R.
Johnson
and
A. D.
Becke
, “
Communication: DFT treatment of strong correlation in 3d transition-metal diatomics
,”
J. Chem. Phys.
146
,
211105
(
2017
).
20.
J. L.
Bao
,
S. O.
Odoh
,
L.
Gagliardi
, and
D. G.
Truhlar
, “
Predicting bond dissociation energies of transition-metal compounds by multiconfiguration pair-density functional theory and second-order perturbation theory based on correlated participating orbitals and separated pairs
,”
J. Chem. Theory Comput.
13
,
616
626
(
2017
).
21.
J. J.
Determan
,
K.
Poole
,
G.
Scalmani
,
M. J.
Frisch
,
B. G.
Janesko
, and
A. K.
Wilson
, “
Comparative study of nonhybrid density functional approximations for the prediction of 3d transition metal thermochemistry
,”
J. Chem. Theory Comput.
13
,
4907
4913
(
2017
).
22.
Y. A.
Aoto
,
A. P.
de Lima Batista
,
A.
Köhn
, and
A. G. S.
de Oliveira-Filho
, “
How to arrive at accurate benchmark values for transition metal compounds: Computation or experiment?
,”
J. Chem. Theory Comput.
13
,
5291
5316
(
2017
).
23.
Z.
Fang
,
M.
Vasiliu
,
K. A.
Peterson
, and
D. A.
Dixon
, “
Prediction of bond dissociation energies/heats of formation for diatomic transition metal compounds: CCSD(T) works
,”
J. Chem. Theory Comput.
13
,
1057
1066
(
2017
).
24.
D.
Hait
,
N. M.
Tubman
,
D. S.
Levine
,
K. B.
Whaley
, and
M.
Head-Gordon
, “
What levels of coupled cluster theory are appropriate for transition metal systems? A study using near-exact quantum chemical values for 3d transition metal binary compounds
,”
J. Chem. Theory Comput.
15
,
5370
5385
(
2019
).
25.
K. T.
Williams
,
Y.
Yao
,
J.
Li
,
L.
Chen
,
H.
Shi
,
M.
Motta
,
C.
Niu
,
U.
Ray
,
S.
Guo
,
R. J.
Anderson
 et al., “
Direct comparison of many-body methods for realistic electronic Hamiltonians
,”
Phys. Rev. X
10
,
011041
(
2020
).
26.
M. D.
Morse
, “
Predissociation measurements of bond dissociation energies
,”
Acc. Chem. Res.
52
,
119
126
(
2018
).
27.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
28.
M.
Hanauer
and
A.
Köhn
, “
Perturbative treatment of triple excitations in internally contracted multireference coupled cluster theory
,”
J. Chem. Phys.
136
,
204107
(
2012
).
29.
W.
Jiang
,
N. J.
DeYonker
, and
A. K.
Wilson
, “
Multireference character for 3d transition-metal-containing molecules
,”
J. Chem. Theory Comput.
8
,
460
468
(
2012
).
30.
J.
Shee
,
B.
Rudshteyn
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
On achieving high accuracy in quantum chemical calculations of 3d transition metal-containing systems: A comparison of auxiliary-field quantum Monte Carlo with coupled cluster, density functional theory, and experiment for diatomic molecules
,”
J. Chem. Theory Comput.
15
,
2346
2358
(
2019
).
31.
B. M.
Hockin
,
C.
Li
,
N.
Robertson
, and
E.
Zysman-Colman
, “
Photoredox catalysts based on earth-abundant metal complexes
,”
Catal. Sci. Technol.
9
,
889
915
(
2019
).
32.
H. A.
Jahn
and
E.
Teller
, “
Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy
,”
Proc. R. Soc. London, Ser. A
161
,
220
235
(
1937
).
33.
B.
Rudshteyn
,
D.
Coskun
,
J. L.
Weber
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
,
R. A.
Friesner
, and
J.
Shee
, “
Predicting ligand-dissociation energies of 3d coordination complexes with auxiliary-field quantum Monte Carlo
,”
J. Chem. Theory Comput.
16
,
3041
(
2020
).
34.
M. T.
Rodgers
and
P. B.
Armentrout
, “
Cationic noncovalent interactions: Energetics and periodic trends
,”
Chem. Rev.
116
,
5642
5687
(
2016
).
35.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
173
(
1980
).
36.
N. J.
DeYonker
,
K. A.
Peterson
,
G.
Steyl
,
A. K.
Wilson
, and
T. R.
Cundari
, “
Quantitative computational thermochemistry of transition metal species
,”
J. Phys. Chem. A
111
,
11269
11277
(
2007
).
37.
K.
Takatsuka
,
T.
Fueno
, and
K.
Yamaguchi
, “
Distribution of odd electrons in ground-state molecules
,”
Theor. Chim. Acta
48
,
175
183
(
1978
).
38.
M.
Head-Gordon
, “
Characterizing unpaired electrons from the one-particle density matrix
,”
Chem. Phys. Lett.
372
,
508
511
(
2003
).
39.
E.
Ramos-Cordoba
,
P.
Salvador
, and
E.
Matito
, “
Separation of dynamic and nondynamic correlation
,”
Phys. Chem. Chem. Phys.
18
,
24015
24023
(
2016
).
40.
E.
Ramos-Cordoba
and
E.
Matito
, “
Local descriptors of dynamic and nondynamic correlation
,”
J. Chem. Theory Comput.
13
,
2705
2711
(
2017
).
41.
S.
Grimme
and
A.
Hansen
, “
A practicable real-space measure and visualization of static electron-correlation effects
,”
Angew. Chem., Int. Ed.
54
,
12308
12313
(
2015
).
42.
L.
Freitag
,
S.
Knecht
,
S. F.
Keller
,
M. G.
Delcey
,
F.
Aquilante
,
T. B.
Pedersen
,
R.
Lindh
,
M.
Reiher
, and
L.
González
, “
Orbital entanglement and CASSCF analysis of the Ru–NO bond in a ruthenium nitrosyl complex
,”
Phys. Chem. Chem. Phys.
17
,
14383
14392
(
2015
).
43.
K. D.
Vogiatzis
,
D.
Ma
,
J.
Olsen
,
L.
Gagliardi
, and
W. A.
De Jong
, “
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
,”
J. Chem. Phys.
147
,
184111
(
2017
).
44.
V.
Krewald
and
D. A.
Pantazis
, “
Applications of the density matrix renormalization group to exchange-coupled transition metal systems
,” in
Transition Metals in Coordination Environments
(
Springer
,
2019
), pp.
91
120
.
45.
B.
Huron
,
J. P.
Malrieu
, and
P.
Rancurel
, “
Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions
,”
J. Chem. Phys.
58
,
5745
5759
(
1973
).
46.
J. B.
Schriber
and
F. A.
Evangelista
, “
Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy
,”
J. Chem. Phys.
144
,
161106
(
2016
).
47.
N. M.
Tubman
,
J.
Lee
,
T. Y.
Takeshita
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
A deterministic alternative to the full configuration interaction quantum Monte Carlo method
,”
J. Chem. Phys.
145
,
044112
(
2016
).
48.
A. A.
Holmes
,
N. M.
Tubman
, and
C. J.
Umrigar
, “
Heat-bath configuration interaction: An efficient selected configuration interaction algorithm inspired by heat-bath sampling
,”
J. Chem. Theory Comput.
12
,
3674
3680
(
2016
).
49.
J. J.
Eriksen
,
T. A.
Anderson
,
J. E.
Deustua
,
K.
Ghanem
,
D.
Hait
,
M. R.
Hoffmann
,
S.
Lee
,
D. S.
Levine
,
I.
Magoulas
,
J.
Shen
 et al., “
The ground state electronic energy of benzene
,”
J. Phys. Chem. Lett.
11
,
8922
8929
(
2020
).
50.
P.-F.
Loos
,
Y.
Damour
, and
A.
Scemama
, “
The performance of CIPSI on the ground state electronic energy of benzene
,”
J. Chem. Phys.
153
,
176101
(
2020
).
51.
M. A.
Ortuño
and
C. J.
Cramer
, “
Multireference electronic structures of Fe–pyridine(diimine) complexes over multiple oxidation states
,”
J. Phys. Chem. A
121
,
5932
5939
(
2017
).
52.
Z.
Li
,
J.
Li
,
N. S.
Dattani
,
C. J.
Umrigar
, and
G. K.-L.
Chan
, “
The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations
,”
J. Chem. Phys.
150
,
024302
(
2019
).
53.
J. M.
Montgomery
and
D. A.
Mazziotti
, “
Strong electron correlation in nitrogenase cofactor, FeMoco
,”
J. Phys. Chem. A
122
,
4988
4996
(
2018
).
54.
J.
Lee
and
M.
Head-Gordon
, “
Regularized orbital-optimized second-order Møller–Plesset perturbation theory: A reliable fifth-order-scaling electron correlation model with orbital energy dependent regularizers
,”
J. Chem. Theory Comput.
14
,
5203
5219
(
2018
).
55.
C. D.
Sherrill
,
M. S.
Lee
, and
M.
Head-Gordon
, “
On the performance of density functional theory for symmetry-breaking problems
,”
Chem. Phys. Lett.
302
,
425
430
(
1999
).
56.
J.
Lee
and
M.
Head-Gordon
, “
Distinguishing artificial and essential symmetry breaking in a single determinant: Approach and application to the C60, C36, and C20 fullerenes
,”
Phys. Chem. Chem. Phys.
21
,
4763
4778
(
2019
).
57.
J.
Lee
and
M.
Head-Gordon
, “
Two single-reference approaches to singlet biradicaloid problems: Complex, restricted orbitals and approximate spin-projection combined with regularized orbital-optimized Møller-Plesset perturbation theory
,”
J. Chem. Phys.
150
,
244106
(
2019
).
58.
J.
Lee
,
F. D.
Malone
, and
M. A.
Morales
, “
Utilizing essential symmetry breaking in auxiliary-field quantum Monte Carlo: Application to the spin gaps of the C36 fullerene and an iron porphyrin model complex
,”
J. Chem. Theory Comput.
16
,
3019
3027
(
2020
).
59.
L. E.
Orgel
,
An Introduction to Transition-Metal Chemistry: Ligand-Field Theory
(
Taylor & Francis
,
1966
).
60.
C. C. J.
Roothaan
, “
New developments in molecular orbital theory
,”
Rev. Mod. Phys.
23
,
69
(
1951
).
61.
G. L.
Miessler
and
D. A.
Tarr
,
Inorganic Chemistry
, 4th ed. (
Prentice Hall
,
2011
).
62.
S. K.
Singh
,
J.
Eng
,
M.
Atanasov
, and
F.
Neese
, “
Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective
,”
Coord. Chem. Rev.
344
,
2
25
(
2017
).
63.
L.
Lang
,
M.
Atanasov
, and
F.
Neese
, “
Improvement of ab initio ligand field theory by means of multistate perturbation theory
,”
J. Phys. Chem. A
124
,
1025
1037
(
2020
).
64.
N. M.
Tubman
,
C. D.
Freeman
,
D. S.
Levine
,
D.
Hait
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
Modern approaches to exact diagonalization and selected configuration interaction with the adaptive sampling CI method
,”
J. Chem. Theory Comput.
16
,
2139
2159
(
2020
).
65.
N. M.
Tubman
,
D. S.
Levine
,
D.
Hait
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
An efficient deterministic perturbation theory for selected configuration interaction methods
,” arXiv:1808.02049 (
2018
).
66.
C. A.
Coulson
and
I.
Fischer
, “
XXXIV. Notes on the molecular orbital treatment of the hydrogen molecule
,”
Philos. Mag.
40
,
386
393
(
1949
).
67.
S. M.
Sharada
,
D.
Stück
,
E. J.
Sundstrom
,
A. T.
Bell
, and
M.
Head-Gordon
, “
Wavefunction stability analysis without analytical electronic hessians: Application to orbital-optimised second-order Møller–Plesset theory and VV10-containing density functionals
,”
Mol. Phys.
113
,
1802
1808
(
2015
).
68.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Many-electron self-interaction error in approximate density functionals
,”
J. Chem. Phys.
125
,
201102
(
2006
).
69.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, “
Density-functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
1694
(
1982
).
70.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
, “
Energies and analytic gradients for a coupled-cluster doubles model using variational Brueckner orbitals: Application to symmetry breaking in O4+
,”
J. Chem. Phys.
109
,
4171
4181
(
1998
).
71.
P.-O.
Löwdin
, “
Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction
,”
Phys. Rev.
97
,
1474
(
1955
).
72.
J.
Wang
,
A. D.
Becke
, and
V. H.
Smith
, Jr.
, “
Evaluation of ⟨S2⟩ in restricted, unrestricted Hartree–Fock, and density functional based theories
,”
J. Chem. Phys.
102
,
3477
3480
(
1995
).
73.
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
, “
Evaluation of ⟨Ŝ2⟩ in density functional theory
,”
J. Chem. Phys.
126
,
214104
(
2007
).
74.
A. I.
Krylov
, “
Spin-contamination of coupled-cluster wave functions
,”
J. Chem. Phys.
113
,
6052
6062
(
2000
).
75.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
 et al., “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
76.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
77.
D. S.
Levine
,
D.
Hait
,
N. M.
Tubman
,
S.
Lehtola
,
K. B.
Whaley
, and
M.
Head-Gordon
, “
CASSCF with extremely large active spaces using the adaptive sampling configuration interaction method
,”
J. Chem. Theory Comput.
16
,
2340
2354
(
2020
).
78.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
79.
T.
Van Voorhis
and
M.
Head-Gordon
, “
A geometric approach to direct minimization
,”
Mol. Phys.
100
,
1713
1721
(
2002
).
80.
S.
Dasgupta
and
J. M.
Herbert
, “
Standard grids for high-precision integration of modern density functionals: SG-2 and SG-3
,”
J. Comput. Chem.
38
,
869
882
(
2017
).
81.
R. Z.
Khaliullin
,
E. A.
Cobar
,
R. C.
Lochan
,
A. T.
Bell
, and
M.
Head-Gordon
, “
Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals
,”
J. Phys. Chem. A
111
,
8753
8765
(
2007
).
82.
P. R.
Horn
,
Y.
Mao
, and
M.
Head-Gordon
, “
Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals
,”
Phys. Chem. Chem. Phys.
18
,
23067
23079
(
2016
).
83.
M.
Loipersberger
,
Y.
Mao
, and
M.
Head-Gordon
, “
Variational forward–backward charge transfer analysis based on absolutely localized molecular orbitals: Energetics and molecular properties
,”
J. Chem. Theory Comput.
16
,
1073
1089
(
2020
).
84.
D.
Hait
,
A.
Rettig
, and
M.
Head-Gordon
, “
Beyond the Coulson–Fischer point: Characterizing single excitation CI and TDDFT for excited states in single bond dissociations
,”
Phys. Chem. Chem. Phys.
21
,
21761
21775
(
2019
).
85.
L. V.
Slipchenko
and
A. I.
Krylov
, “
Singlet-triplet gaps in diradicals by the spin-flip approach: A benchmark study
,”
J. Chem. Phys.
117
,
4694
4708
(
2002
).
86.
J.
Shee
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
Singlet–triplet energy gaps of organic biradicals and polyacenes with auxiliary-field quantum Monte Carlo
,”
J. Chem. Theory Comput.
15
,
4924
4932
(
2019
).
87.
Y. A.
Bernard
,
Y.
Shao
, and
A. I.
Krylov
, “
General formulation of spin-flip time-dependent density functional theory using non-collinear kernels: Theory, implementation, and benchmarks
,”
J. Chem. Phys.
136
,
204103
(
2012
).
88.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
89.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
, “
Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals
,”
J. Chem. Theory Comput.
8
,
1515
1531
(
2012
).
90.
J.
Shee
and
M.
Head-Gordon
, “
Predicting excitation energies of twisted intramolecular charge-transfer states with the time-dependent density functional theory: Comparison with experimental measurements in the gas phase and solvents ranging from hexanes to acetonitrile
,”
J. Chem. Theory Comput.
16
,
6244
(
2020
).
91.
B.
Pritchard
and
J.
Autschbach
, “
Theoretical investigation of paramagnetic NMR shifts in transition metal acetylacetonato complexes: Analysis of signs, magnitudes, and the role of the covalency of ligand–metal bonding
,”
Inorg. Chem.
51
,
8340
8351
(
2012
).
92.
J.
Autschbach
and
M.
Srebro
, “
Delocalization error and ‘functional tuning’ in Kohn–Sham calculations of molecular properties
,”
Acc. Chem. Res.
47
,
2592
2602
(
2014
).
93.
D.
Hait
and
M.
Head-Gordon
, “
Delocalization errors in density functional theory are essentially quadratic in fractional occupation number
,”
J. Phys. Chem. Lett.
9
,
6280
6288
(
2018
).
94.
D.
Casanova
and
A. I.
Krylov
, “
Spin-flip methods in quantum chemistry
,”
Phys. Chem. Chem. Phys.
22
,
4326
4342
(
2020
).
95.
S. C.
Rasmussen
, “
The 18-electron rule and electron counting in transition metal compounds: Theory and application
,”
ChemTexts
1
,
10
(
2015
).
96.
A.
Domingo
,
M.
Àngels Carvajal
, and
C.
De Graaf
, “
Spin crossover in Fe(II) complexes: An ab initio study of ligand σ-donation
,”
Int. J. Quantum Chem.
110
,
331
337
(
2010
).
97.
J. M.
Galbraith
and
H. F.
Schaefer
 III
, “
Concerning the applicability of density functional methods to atomic and molecular negative ions
,”
J. Chem. Phys.
105
,
862
864
(
1996
).
98.
O. A.
Vydrov
,
G. E.
Scuseria
, and
J. P.
Perdew
, “
Tests of functionals for systems with fractional electron number
,”
J. Chem. Phys.
126
,
154109
(
2007
).
99.
W. R.
Scheidt
and
C. A.
Reed
, “
Spin-state/stereochemical relationships in iron porphyrins: Implications for the hemoproteins
,”
Chem. Rev.
81
,
543
555
(
1981
).
100.
P.
Gütlich
and
H. A.
Goodwin
, “
Spin crossover—An overall perspective
,” in
Spin Crossover in Transition Metal Compounds I
(
Springer
,
2004
), pp.
1
47
.
101.
J.-F.
Létard
,
P.
Guionneau
, and
L.
Goux-Capes
, “
Towards spin crossover applications
,” in
Spin Crossover in Transition Metal Compounds III
(
Springer
,
2004
), pp.
221
249
.
102.
D. A.
Reed
,
B. K.
Keitz
,
J.
Oktawiec
,
J. A.
Mason
,
T.
Runčevski
,
D. J.
Xiao
,
L. E.
Darago
,
V.
Crocellà
,
S.
Bordiga
, and
J. R.
Long
, “
A spin transition mechanism for cooperative adsorption in metal–organic frameworks
,”
Nature
550
,
96
100
(
2017
).
103.
L. M.
Lawson Daku
,
F.
Aquilante
,
T. W.
Robinson
, and
A.
Hauser
, “
Accurate spin-state energetics of transition metal complexes. 1. CCSD(T), CASPT2, and DFT study of [M(NCH)6]2+(M = Fe, Co)
,”
J. Chem. Theory Comput.
8
,
4216
4231
(
2012
).
104.
S.
Song
,
M.-C.
Kim
,
E.
Sim
,
A.
Benali
,
O.
Heinonen
, and
K.
Burke
, “
Benchmarks and reliable DFT results for spin gaps of small ligand Fe(II) complexes
,”
J. Chem. Theory Comput.
14
,
2304
2311
(
2018
).
105.
A.
Droghetti
,
D.
Alfè
, and
S.
Sanvito
, “
Assessment of density functional theory for iron (II) molecules across the spin-crossover transition
,”
J. Chem. Phys.
137
,
124303
(
2012
).
106.
B. M.
Flöser
,
Y.
Guo
,
C.
Riplinger
,
F.
Tuczek
, and
F.
Neese
, “
Detailed pair natural orbital-based coupled cluster studies of spin crossover energetics
,”
J. Chem. Theory Comput.
16
,
2224
2235
(
2020
).
107.
K.
Yamaguchi
,
F.
Jensen
,
A.
Dorigo
, and
K. N.
Houk
, “
A spin correction procedure for unrestricted Hartree-Fock and Møller-Plesset wavefunctions for singlet diradicals and polyradicals
,”
Chem. Phys. Lett.
149
,
537
542
(
1988
).
108.
S.
Yamanaka
,
T.
Kawakami
,
H.
Nagao
, and
K.
Yamaguchi
, “
Effective exchange integrals for open-shell species by density functional methods
,”
Chem. Phys. Lett.
231
,
25
33
(
1994
).
109.
X.
Sheng
,
L. M.
Thompson
, and
H. P.
Hratchian
, “
Assessing the calculation of exchange coupling constants and spin crossover gaps using the approximate projection model to improve density functional calculations
,”
J. Chem. Theory Comput.
16
,
154
163
(
2019
).
110.
L.
Wilbraham
,
P.
Verma
,
D. G.
Truhlar
,
L.
Gagliardi
, and
I.
Ciofini
, “
Multiconfiguration pair-density functional theory predicts spin-state ordering in iron complexes with the same accuracy as complete active space second-order perturbation theory at a significantly reduced computational cost
,”
J. Phys. Chem. Lett.
8
,
2026
2030
(
2017
).
111.
T. F.
Hughes
and
R. A.
Friesner
, “
Development of accurate DFT methods for computing redox potentials of transition metal complexes: Results for model complexes and application to cytochrome P450
,”
J. Chem. Theory Comput.
8
,
442
459
(
2012
).
112.
L. E.
Roy
,
E.
Jakubikova
,
M. G.
Guthrie
, and
E. R.
Batista
, “
Calculation of one-electron redox potentials revisited. Is it possible to calculate accurate potentials with density functional methods?
,”
J. Phys. Chem. A
113
,
6745
6750
(
2009
).
113.
M.
Beley
,
J.-P.
Collin
,
R.
Ruppert
, and
J.-P.
Sauvage
, “
Nickel (II)-cyclam: An extremely selective electrocatalyst for reduction of CO2 in water
,”
Chem. Commun.
1984
,
1315
1316
.
114.
T.
Geiger
and
F. C.
Anson
, “
Homogeneous catalysis of the electrochemical reduction of dioxygen by a macrocyclic cobalt (III) complex
,”
J. Am. Chem. Soc.
103
,
7489
7496
(
1981
).
115.
E.
Tsuchida
,
K.
Oyaizu
,
E. L.
Dewi
,
T.
Imai
, and
F. C.
Anson
, “
Catalysis of the electroreduction of O2 to H2O by vanadium-salen complexes in acidified dichloromethane
,”
Inorg. Chem.
38
,
3704
3708
(
1999
).
116.
Z.
Liu
and
F. C.
Anson
, “
Electrochemical properties of vanadium (III, IV, V)-salen complexes in acetonitrile. Four-electron reduction of O2 by V (III)-salen
,”
Inorg. Chem.
39
,
274
280
(
2000
).
117.
J.
Song
,
E. L.
Klein
,
F.
Neese
, and
S.
Ye
, “
The mechanism of homogeneous CO2 reduction by Ni(cyclam): Product selectivity, concerted proton-electron transfer and C–O bond cleavage
,”
Inorg. Chem.
53
,
7500
7507
(
2014
).
118.
I.
Bhugun
,
D.
Lexa
, and
J.-M.
Savéant
, “
Catalysis of the electrochemical reduction of carbon dioxide by iron (0) porphyrins: Synergystic effect of weak Brönsted acids
,”
J. Am. Chem. Soc.
118
,
1769
1776
(
1996
).
119.
J. P.
Collman
,
S.
Ghosh
,
A.
Dey
,
R. A.
Decréau
, and
Y.
Yang
, “
Catalytic reduction of O2 by cytochrome C using a synthetic model of cytochrome C oxidase
,”
J. Am. Chem. Soc.
131
,
5034
5035
(
2009
).
120.
Z.
Halime
,
H.
Kotani
,
Y.
Li
,
S.
Fukuzumi
, and
K. D.
Karlin
, “
Homogeneous catalytic O2 reduction to water by a cytochrome C oxidase model with trapping of intermediates and mechanistic insights
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
13990
13994
(
2011
).
121.
C.
Costentin
,
S.
Drouet
,
M.
Robert
, and
J.-M.
Savéant
, “
A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst
,”
Science
338
,
90
94
(
2012
).
122.
C.
Römelt
,
J.
Song
,
M.
Tarrago
,
J. A.
Rees
,
M.
van Gastel
,
T.
Weyhermüller
,
S.
DeBeer
,
E.
Bill
,
F.
Neese
, and
S.
Ye
, “
Electronic structure of a formal iron (0) porphyrin complex relevant to CO2 reduction
,”
Inorg. Chem.
56
,
4745
4750
(
2017
).
123.
E. E.
Benson
,
M. D.
Sampson
,
K. A.
Grice
,
J. M.
Smieja
,
J. D.
Froehlich
,
D.
Friebel
,
J. A.
Keith
,
E. A.
Carter
,
A.
Nilsson
, and
C. P.
Kubiak
, “
The electronic states of rhenium bipyridyl electrocatalysts for CO2 reduction as revealed by x-ray absorption spectroscopy and computational quantum chemistry
,”
Angew. Chem., Int. Ed.
52
,
4841
4844
(
2013
).
124.
C.
Riplinger
,
M. D.
Sampson
,
A. M.
Ritzmann
,
C. P.
Kubiak
, and
E. A.
Carter
, “
Mechanistic contrasts between manganese and rhenium bipyridine electrocatalysts for the reduction of carbon dioxide
,”
J. Am. Chem. Soc.
136
,
16285
16298
(
2014
).
125.
M.
Loipersberger
,
D. Z.
Zee
,
J. A.
Panetier
,
C. J.
Chang
,
J. R.
Long
, and
M.
Head-Gordon
, “
Computational study of an iron(II) polypyridine electrocatalyst for CO2 reduction: Key roles for intramolecular interactions in CO2 binding and proton transfer
,”
Inorg. Chem.
59
,
8146
8160
(
2020
).
126.
J. S.
Derrick
,
M.
Loipersberger
,
R.
Chatterjee
,
D. A.
Iovan
,
P. T.
Smith
,
K.
Chakarawet
,
J.
Yano
,
J. R.
Long
,
M.
Head-Gordon
, and
C. J.
Chang
, “
Metal–ligand cooperativity via exchange coupling promotes iron-catalyzed electrochemical CO2 reduction at low overpotentials
,”
J. Am. Chem. Soc.
142
,
20489
20501
(
2020
).
127.
M.
Loipersberger
,
D. G. A.
Cabral
,
D. B. K.
Chu
, and
M.
Head-Gordon
, “
Mechanistic insights into CO and Fe quaterpyridine-based CO2 reduction catalysts: Metal–ligand orbital interaction as the key driving force for distinct pathways
,”
J. Am. Chem. Soc.
143
,
744
763
(
2021
).
128.
B.
Butschke
,
K. L.
Fillman
,
T.
Bendikov
,
L. J. W.
Shimon
,
Y.
Diskin-Posner
,
G.
Leitus
,
S. I.
Gorelsky
,
M. L.
Neidig
, and
D.
Milstein
, “
How innocent are potentially redox non-innocent ligands? Electronic structure and metal oxidation states in iron-PNN complexes as a representative case study
,”
Inorg. Chem.
54
,
4909
4926
(
2015
).
129.
R. H.
Crabtree
,
The Organometallic Chemistry of the Transition Metals
(
John Wiley & Sons
,
2009
).
130.
S.
Sreekantan Nair Lalithambika
,
R.
Golnak
,
B.
Winter
, and
K.
Atak
, “
Electronic structure of aqueous [Co(bpy)3]2+/3+ electron mediators
,”
Inorg. Chem.
58
,
4731
4740
(
2019
).
131.
J. A.
Keith
,
K. A.
Grice
,
C. P.
Kubiak
, and
E. A.
Carter
, “
Elucidation of the selectivity of proton-dependent electrocatalytic CO2 reduction by fac-Re(bpy)(CO)3 Cl
,”
J. Am. Chem. Soc.
135
,
15823
15829
(
2013
).
132.
D. Z.
Zee
,
M.
Nippe
,
A. E.
King
,
C. J.
Chang
, and
J. R.
Long
, “
Tuning second coordination sphere interactions in polypyridyl–iron complexes to achieve selective electrocatalytic reduction of carbon dioxide to carbon monoxide
,”
Inorg. Chem.
59
,
5206
5217
(
2020
).
133.
I.
Azcarate
,
C.
Costentin
,
M.
Robert
, and
J.-M.
Savéant
, “
Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion
,”
J. Am. Chem. Soc.
138
,
16639
16644
(
2016
).
134.
J. P.
Collman
,
J. L.
Hoard
,
N.
Kim
,
G.
Lang
, and
C. A.
Reed
, “
Synthesis, stereochemistry, and structure-related properties of α, β, γ, δ-Tetraphenylporphinatoiron(II)
,”
J. Am. Chem. Soc.
97
,
2676
2681
(
1975
).
135.
H.
Chen
,
W.
Lai
, and
S.
Shaik
, “
Multireference and multiconfiguration ab initio methods in heme-related systems: What have we learned so far?
,”
J. Phys. Chem. B
115
,
1727
1742
(
2011
).
136.
M.
Radon
and
K.
Pierloot
, “
Binding of CO, NO, and O2 to heme by density functional and multireference ab initio calculations
,”
J. Phys. Chem. A
112
,
11824
11832
(
2008
).
137.
M.
Radon
,
E.
Broclawik
, and
K.
Pierloot
, “
Electronic structure of selected {FeNO}7 complexes in heme and non-heme architectures: A density functional and multireference ab initio study
,”
J. Phys. Chem. B
114
,
1518
1528
(
2010
).
138.
K.
Boguslawski
,
C. R.
Jacob
, and
M.
Reiher
, “
Can DFT accurately predict spin densities? Analysis of discrepancies in iron nitrosyl complexes
,”
J. Chem. Theory Comput.
7
,
2740
2752
(
2011
).
139.
P. J.
Hay
,
J. C.
Thibeault
, and
R.
Hoffmann
, “
Orbital interactions in metal dimer complexes
,”
J. Am. Chem. Soc.
97
,
4884
4899
(
1975
).
140.
O.
Kahn
and
B.
Briat
, “
Exchange interaction in polynuclear complexes. 1. Principles, model, and application to the binuclear complexes of chromium (III)
,”
J. Chem. Soc., Faraday Trans. 2
72
,
268
281
(
1976
).
141.
O.
Kahn
and
B.
Briat
, “
Exchange interaction in polynuclear complexes. 2. Antiferromagnetic coupling in binuclear oxo-bridged iron (III) complexes
,”
J. Chem. Soc., Faraday Trans. 2
72
,
1441
1446
(
1976
).
142.
M.
Orio
,
D. A.
Pantazis
,
T.
Petrenko
, and
F.
Neese
, “
Magnetic and spectroscopic properties of mixed valence manganese (III, IV) dimers: A systematic study using broken symmetry density functional theory
,”
Inorg. Chem.
48
,
7251
7260
(
2009
).
143.
P.
Comba
,
S.
Hausberg
, and
B.
Martin
, “
Calculation of exchange coupling constants of transition metal complexes with DFT
,”
J. Phys. Chem. A
113
,
6751
6755
(
2009
).
144.
D. A.
Pantazis
, “
Meeting the challenge of magnetic coupling in a triply-bridged chromium dimer: Complementary broken-symmetry density functional theory and multireference density matrix renormalization group perspectives
,”
J. Chem. Theory Comput.
15
,
938
948
(
2019
).
145.
D. A.
Pantazis
, “
Assessment of double-hybrid density functional theory for magnetic exchange coupling in manganese complexes
,”
Inorganics
7
,
57
(
2019
).
146.
J. J.
Phillips
and
J. E.
Peralta
, “
The role of range-separated Hartree–Fock exchange in the calculation of magnetic exchange couplings in transition metal complexes
,”
J. Chem. Phys.
134
,
034108
(
2011
).
147.
K. E.
Lewis
,
D. M.
Golden
, and
G. P.
Smith
, “
Organometallic bond dissociation energies: Laser pyrolysis of iron pentacarbonyl, chromium hexacarbonyl, molybdenum hexacarbonyl, and tungsten hexacarbonyl
,”
J. Am. Chem. Soc.
106
,
3905
3912
(
1984
).
148.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Tao
,
V. N.
Staroverov
,
G. E.
Scuseria
, and
G. I.
Csonka
, “
Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits
,”
J. Chem. Phys.
123
,
062201
(
2005
).
149.
C.
van Wüllen
, “
A relativistic Kohn–Sham density functional procedure by means of direct perturbation theory. II. Application to the molecular structure and bond dissociation energies of transition metal carbonyls and related complexes
,”
J. Chem. Phys.
105
,
5485
5493
(
1996
).
150.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
, “
Assessment of orbital-optimized, spin-component scaled second-order many-body perturbation theory for thermochemistry and kinetics
,”
J. Chem. Theory Comput.
5
,
3060
3073
(
2009
).
151.
I.
Hyla-Kryspin
and
S.
Grimme
, “
Comprehensive study of the thermochemistry of first-row transition metal compounds by spin component scaled MP2 and MP3 methods
,”
Organometallics
23
,
5581
5592
(
2004
).
152.
T.
Stuyver
,
B.
Chen
,
T.
Zeng
,
P.
Geerlings
,
F.
De Proft
, and
R.
Hoffmann
, “
Do diradicals behave like radicals?
,”
Chem. Rev.
119
,
11291
11351
(
2019
).
153.
G. J. O.
Beran
,
S. R.
Gwaltney
, and
M.
Head-Gordon
, “
Approaching closed-shell accuracy for radicals using coupled cluster theory with perturbative triple substitutions
,”
Phys. Chem. Chem. Phys.
5
,
2488
2493
(
2003
).
154.
L. W.
Bertels
,
J.
Lee
, and
M.
Head-Gordon
, “
Polishing the gold standard: The role of orbital choice in CCSD(T) vibrational frequency prediction
,”
J. Chem. Theory Comput.
17
,
742
(
2020
).
155.
G. P.
Chen
,
V. K.
Voora
,
M. M.
Agee
,
S. G.
Balasubramani
, and
F.
Furche
, “
Random-phase approximation methods
,”
Annu. Rev. Phys. Chem.
68
,
421
445
(
2017
).
156.
H.
Eshuis
,
J.
Yarkony
, and
F.
Furche
, “
Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration
,”
J. Chem. Phys.
132
,
234114
(
2010
).
157.
G. E.
Scuseria
,
T. M.
Henderson
, and
D. C.
Sorensen
, “
The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach
,”
J. Chem. Phys.
129
,
231101
(
2008
).
158.
J. E.
Bates
,
P. D.
Mezei
,
G. I.
Csonka
,
J.
Sun
, and
A.
Ruzsinszky
, “
Reference determinant dependence of the random phase approximation in 3d transition metal chemistry
,”
J. Chem. Theory Comput.
13
,
100
109
(
2017
).
159.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Failure of the random-phase-approximation correlation energy
,”
Phys. Rev. A
85
,
042507
(
2012
).
160.
Y.
Jin
,
D.
Zhang
,
Z.
Chen
,
N. Q.
Su
, and
W.
Yang
, “
Generalized optimized effective potential for orbital functionals and self-consistent calculation of random phase approximations
,”
J. Phys. Chem. Lett.
8
,
4746
4751
(
2017
).
161.
J. C.
Sancho-García
,
A. J.
Pérez-Jiménez
,
M.
Savarese
,
E.
Brémond
, and
C.
Adamo
, “
Importance of orbital optimization for double-hybrid density functionals: Application of the OO-PBE-QIDH model for closed-and open-shell systems
,”
J. Phys. Chem. A
120
,
1756
1762
(
2016
).
162.
A.
Najibi
and
L.
Goerigk
, “
A comprehensive assessment of the effectiveness of orbital optimization in double-hybrid density functionals in the treatment of thermochemistry, kinetics, and noncovalent interactions
,”
J. Phys. Chem. A
122
,
5610
5624
(
2018
).
163.
S.
Grimme
and
M.
Steinmetz
, “
A computationally efficient double hybrid density functional based on the random phase approximation
,”
Phys. Chem. Chem. Phys.
18
,
20926
20937
(
2016
).
164.
B.
Chan
,
L.
Goerigk
, and
L.
Radom
, “
On the inclusion of post-MP2 contributions to double-hybrid density functionals
,”
J. Comput. Chem.
37
,
183
193
(
2016
).
165.
S.
Dohm
,
A.
Hansen
,
M.
Steinmetz
,
S.
Grimme
, and
M. P.
Checinski
, “
Comprehensive thermochemical benchmark set of realistic closed-shell metal organic reactions
,”
J. Chem. Theory Comput.
14
,
2596
2608
(
2018
).
166.
B.
Chan
,
P. M. W.
Gill
, and
M.
Kimura
, “
Assessment of DFT methods for transition metals with the TMC151 compilation of data sets and comparison with accuracies for main-group chemistry
,”
J. Chem. Theory Comput.
15
,
3610
3622
(
2019
).
167.
M. A.
Iron
and
T.
Janes
, “
Evaluating transition metal barrier heights with the latest density functional theory exchange–correlation functionals: The MOBH35 benchmark database
,”
J. Phys. Chem. A
123
,
3761
3781
(
2019
).
168.
J. P.
Malrieu
,
R.
Caballol
,
C. J.
Calzado
,
C.
de Graaf
, and
N.
Guihéry
, “
Magnetic interactions in molecules and highly correlated materials: Physical content, analytical derivation, and rigorous extraction of magnetic Hamiltonians
,”
Chem. Rev.
114
,
429
492
(
2014
).

Supplementary Material

You do not currently have access to this content.