We develop new methods to efficiently propagate the hierarchical equations of motion (HEOM) by using the Tucker and hierarchical Tucker (HT) tensors to represent the reduced density operator and auxiliary density operators. We first show that by employing the split operator method, the specific structure of the HEOM allows a simple propagation scheme using the Tucker tensor. When the number of effective modes in the HEOM increases and the Tucker representation becomes intractable, the split operator method is extended to the binary tree structure of the HT representation. It is found that to update the binary tree nodes related to a specific effective mode, we only need to propagate a short matrix product state constructed from these nodes. Numerical results show that by further employing the mode combination technique commonly used in the multi-configuration time-dependent Hartree approaches, the binary tree representation can be applied to study excitation energy transfer dynamics in a fairly large system including over 104 effective modes. The new methods may thus provide a promising tool in simulating quantum dynamics in condensed phases.

1.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
2.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
3.
J.
Jin
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
128
,
234703
(
2008
).
4.
Y.
Tanimura
,
J. Chem. Phys.
153
,
020901
(
2020
).
5.
R.-X.
Xu
,
P.
Cui
,
X.-Q.
Li
,
Y.
Mo
, and
Y.
Yan
,
J. Chem. Phys.
122
,
041103
(
2005
).
6.
Q.
Shi
,
L.
Chen
,
G.
Nan
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
130
,
084105
(
2009
).
7.
Q.
Shi
,
L.
Chen
,
G.
Nan
,
R.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
130
,
164518
(
2009
).
8.
M.
Tanaka
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
78
,
073802
(
2009
).
9.
L.
Chen
and
Q.
Shi
,
J. Chem. Phys.
130
,
134505
(
2009
).
10.
Q.
Shi
,
L.
Zhu
, and
L.
Chen
,
J. Chem. Phys.
135
,
044505
(
2011
).
11.
W.
Xie
,
Y.
Xu
,
L.
Zhu
, and
Q.
Shi
,
J. Chem. Phys.
140
,
174105
(
2014
).
12.
J.
Zhang
,
R.
Borrelli
, and
Y.
Tanimura
,
J. Chem. Phys.
152
,
214114
(
2020
).
13.
D.
Wang
,
L.
Chen
,
R.
Zheng
,
L.
Wang
, and
Q.
Shi
,
J. Chem. Phys.
132
,
081101
(
2010
).
14.
L.
Chen
,
Y.
Zhao
, and
Y.
Tanimura
,
J. Phys. Chem. Lett.
6
,
3110
(
2015
).
15.
Y.
Yan
,
L.
Song
, and
Q.
Shi
,
J. Chem. Phys.
148
,
084109
(
2018
).
16.
I. S.
Dunn
,
R.
Tempelaar
, and
D. R.
Reichman
,
J. Chem. Phys.
150
,
184109
(
2019
).
17.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
18.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
17255
(
2009
).
19.
T.
Kato
and
Y.
Tanimura
,
J. Chem. Phys.
120
,
260
(
2004
).
20.
L.
Chen
,
R.
Zheng
,
Q.
Shi
, and
Y.
Yan
,
J. Chem. Phys.
131
,
094502
(
2009
).
21.
L.
Chen
,
R.
Zheng
,
Y.
Jing
, and
Q.
Shi
,
J. Chem. Phys.
134
,
194508
(
2011
).
22.
X.
Leng
,
Y.-M.
Yan
,
R.-D.
Zhu
,
K.
Song
,
Y.-X.
Weng
, and
Q.
Shi
,
J. Phys. Chem. B
122
,
4642
(
2018
).
23.
A.
Kato
and
Y.
Tanimura
,
J. Chem. Phys.
143
,
064107
(
2015
).
24.
L.-Z.
Song
and
Q.
Shi
,
Phys. Rev. B
95
,
184108
(
2017
).
25.
X.
Zheng
,
J.
Jin
,
S.
Welack
,
M.
Luo
, and
Y.
Yan
,
J. Chem. Phys.
130
,
164708
(
2009
).
26.
Z.-H.
Li
,
N.-H.
Tong
,
X.
Zheng
,
D.
Hou
,
J.-H.
Wei
,
J.
Hu
, and
Y.-J.
Yan
,
Phys. Rev. Lett.
109
,
266403
(
2012
).
27.
R.
Härtle
,
G.
Cohen
,
D. R.
Reichman
, and
A. J.
Millis
,
Phys. Rev. B
88
,
235426
(
2013
).
28.
L.
Han
,
H.-D.
Zhang
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
148
,
234108
(
2018
).
29.
C.
Schinabeck
,
R.
Härtle
, and
M.
Thoss
,
Phys. Rev. B
97
,
235429
(
2018
).
30.
Q.
Shi
,
Y.
Xu
,
Y.
Yan
, and
M.
Xu
,
J. Chem. Phys.
148
,
174102
(
2018
).
31.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
74
,
3131
(
2005
).
32.
J.
Hu
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
133
,
101106
(
2010
).
33.
L.
Ye
,
H.-D.
Zhang
,
Y.
Wang
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
147
,
074111
(
2017
).
34.
K.
Song
,
S.
Bai
, and
Q.
Shi
,
J. Chem. Phys.
143
,
064109
(
2015
).
35.
J.
Strümpfer
and
K.
Schulten
,
J. Chem. Theory Comput.
8
,
2808
(
2012
).
36.
T.
Kramer
,
M.
Noack
,
A.
Reinefeld
,
M.
Rodríguez
, and
Y.
Zelinskyy
,
J. Comput. Chem.
39
,
1779
(
2018
).
37.
C.
Kreisbeck
and
T.
Kramer
,
J. Chem. Theory Comput.
7
,
2166
(
2011
).
38.
M.
Tsuchimoto
and
Y.
Tanimura
,
J. Chem. Theory Comput.
11
,
3859
(
2015
).
39.
C.
Meier
and
D. J.
Tannor
,
J. Chem. Phys.
111
,
3365
(
1999
).
40.
U.
Kleinekathöfer
,
J. Chem. Phys.
121
,
2505
(
2004
).
41.
H.
Liu
,
L.
Zhu
,
S.
Bai
, and
Q.
Shi
,
J. Chem. Phys.
140
,
134106
(
2014
).
42.
Y.
Zhou
and
J.
Shao
,
J. Chem. Phys.
128
,
034106
(
2008
).
43.
L.
Zhu
,
H.
Liu
, and
Q.
Shi
,
New J. Phys.
15
,
095020
(
2013
).
44.
J. M.
Moix
and
J.
Cao
,
J. Chem. Phys.
139
,
134106
(
2013
).
45.
C.
Duan
,
Z.
Tang
,
J.
Cao
, and
J.
Wu
,
Phys. Rev. B
95
,
214308
(
2017
).
46.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
47.
U.
Manthe
,
H. D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
48.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H. D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
49.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
50.
U.
Manthe
,
J. Chem. Phys.
128
,
164116
(
2008
).
51.
H.-D.
Meyer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
351
(
2012
).
52.
53.
U.
Manthe
,
J. Phys.: Condens. Matter
29
,
253001
(
2017
).
54.
M. A.
Cazalilla
and
J. B.
Marston
,
Phys. Rev. Lett.
88
,
256403
(
2002
).
55.
F.
Verstraete
,
J. J.
García-Ripoll
, and
J. I.
Cirac
,
Phys. Rev. Lett.
93
,
207204
(
2004
).
57.
59.
J.
Haegeman
,
J. I.
Cirac
,
T. J.
Osborne
,
I.
Pižorn
,
H.
Verschelde
, and
F.
Verstraete
,
Phys. Rev. Lett.
107
,
070601
(
2011
).
60.
C.
Lubich
,
I. V.
Oseledets
, and
B.
Vandereycken
,
SIAM J. Numer. Anal.
53
,
917
(
2015
).
61.
J.
Haegeman
,
C.
Lubich
,
I.
Oseledets
,
B.
Vandereycken
, and
F.
Verstraete
,
Phys. Rev. B
94
,
165116
(
2016
).
62.
R.
Borrelli
and
M. F.
Gelin
,
Sci. Rep.
7
,
9127
(
2017
).
63.
J.
Ren
,
Z.
Shuai
, and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
14
,
5027
(
2018
).
64.
X.
Xie
,
Y.
Liu
,
Y.
Yao
,
U.
Schollwöck
,
C.
Liu
, and
H.
Ma
,
J. Chem. Phys.
151
,
224101
(
2019
).
65.
F. A.
Schrroder
,
D. H.
Turban
,
A. J.
Musser
,
N. D.
Hine
, and
A. W.
Chin
,
Nat. Commun.
10
,
1062
(
2019
).
66.
A.
Baiardi
and
M.
Reiher
,
J. Chem. Theory Comput.
15
,
3481
(
2019
).
67.
A. M.
Alvertis
,
F. A. Y. N.
Schröder
, and
A. W.
Chin
,
J. Chem. Phys.
151
,
084104
(
2019
).
68.
W.
Li
,
J.
Ren
, and
Z.
Shuai
,
J. Chem. Phys.
152
,
024127
(
2020
).
69.
Y.-Y.
Shi
,
L.-M.
Duan
, and
G.
Vidal
,
Phys. Rev. A
74
,
022320
(
2006
).
70.
N.
Nakatani
and
G. K.-L.
Chan
,
J. Chem. Phys.
138
,
134113
(
2013
).
71.
R.
Borrelli
,
J. Chem. Phys.
150
,
234102
(
2019
).
72.
Y.
Yan
,
T.
Xing
, and
Q.
Shi
,
J. Chem. Phys.
153
,
214109
(
2020
).
73.
L. R.
Tucker
,
Psychometrika
31
,
279
(
1966
).
74.
T. G.
Kolda
and
B. W.
Bader
,
SIAM Rev.
51
,
455
(
2009
).
75.
W.
Hackbusch
and
S.
Kühn
,
J. Fourier. Anal. Appl.
15
,
706
(
2009
).
76.
L.
Grasedyck
,
D.
Kressner
, and
C.
Tobler
,
GAMM-Mitt.
36
,
53
(
2013
).
77.
Y.-A.
Yan
,
F.
Yang
,
Y.
Liu
, and
J.
Shao
,
Chem. Phys. Lett.
395
,
216
(
2004
).
78.
Y.
Yan
,
J. Chem. Phys.
140
,
054105
(
2014
).
79.
I. V.
Oseledets
,
SIAM J. Sci. Comput.
33
,
2295
(
2011
).
80.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
131
,
024114
(
2009
).
81.
M.
Ehara
,
H. D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
105
,
8865
(
1996
).
82.
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
109
,
3518
(
1998
).
83.
O.
Vendrell
and
H.-D.
Meyer
,
J. Chem. Phys.
134
,
044135
(
2011
).
84.
K.
Balzer
,
Z.
Li
,
O.
Vendrell
, and
M.
Eckstein
,
Phys. Rev. B
91
,
045136
(
2015
).
85.
Y.-C.
Cheng
and
G. R.
Fleming
,
Annu. Rev. Phys. Chem.
60
,
241
(
2009
).
86.
A.
Chenu
and
G. D.
Scholes
,
Annu. Rev. Phys. Chem.
66
,
69
(
2015
).
87.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
88.
U.
Weiss
,
Quantum Dissipative Systems
, 4th ed. (
World Scientific
,
New Jersey
,
2012
).
89.
T.
Renger
,
V.
May
, and
O.
Kühn
,
Phys. Rep.
343
,
137
(
2001
).
90.
M.
Schröter
,
S. D.
Ivanov
,
J.
Schulze
,
S. P.
Polyutov
,
Y.
Yan
,
T.
Pullerits
, and
O.
Kühn
,
Phys. Rep.
567
,
1
(
2015
).
91.
J.
Moix
,
J.
Wu
,
P.
Huo
,
D.
Coker
, and
J.
Cao
,
J. Phys. Chem. Lett.
2
,
3045
(
2011
).
92.
M.
Wendling
,
T.
Pullerits
,
M. A.
Przyjalgowski
,
S. I. E.
Vulto
,
T. J.
Aartsma
,
R.
van Grondelle
, and
H.
van Amerongen
,
J. Phys. Chem. B
104
,
5825
(
2000
).
93.
J.
Schulze
,
M. F.
Shibl
,
M. J.
Al-Marri
, and
O.
Kühn
,
J. Chem. Phys.
144
,
185101
(
2016
).
94.
L.
Zhu
,
H.
Liu
,
W.
Xie
, and
Q.
Shi
,
J. Chem. Phys.
137
,
194106
(
2012
).
95.
P.
Jordan
,
P.
Fromme
,
H. T.
Witt
,
O.
Klukas
,
W.
Saenger
, and
N.
Krauß
,
Nature
411
,
909
(
2001
).
96.
T.
Kramer
,
M.
Noack
,
J. R.
Reimers
,
A.
Reinefeld
,
M.
Rodríguez
, and
S.
Yin
,
Chem. Phys.
515
,
262
(
2018
).
97.
J.
Adolphs
,
F.
Müh
,
M. E.-A.
Madjet
,
M. S.
Busch
, and
T.
Renger
,
J. Am. Chem. Soc.
132
,
3331
(
2010
).
You do not currently have access to this content.