Protein assembly is often studied in a three-dimensional solution, but a significant fraction of binding events involve proteins that can reversibly bind and diffuse along a two-dimensional surface. In a recent study, we quantified how proteins can exploit the reduced dimensionality of the membrane to trigger complex formation. Here, we derive a single expression for the characteristic timescale of this multi-step assembly process, where the change in dimensionality renders rates and concentrations effectively time-dependent. We find that proteins can accelerate dimer formation due to an increase in relative concentration, driving more frequent collisions, which often win out over slow-downs due to diffusion. Our model contains two protein populations that dimerize with one another and use a distinct site to bind membrane lipids, creating a complex reaction network. However, by identifying two major rate-limiting pathways to reach an equilibrium steady-state, we derive an excellent approximation for the mean first passage time when lipids are in abundant supply. Our theory highlights how the “sticking rate” or effective adsorption coefficient of the membrane is central in controlling timescales. We also derive a corrected localization rate to quantify how the geometry of the system and diffusion can reduce rates of membrane localization. We validate and test our results using kinetic and particle-based reaction-diffusion simulations. Our results establish how the speed of key assembly steps can shift by orders-of-magnitude when membrane localization is possible, which is critical to understanding mechanisms used in cells.

1.
H. T.
McMahon
and
E.
Boucrot
, “
Molecular mechanism and physiological functions of clathrin-mediated endocytosis
,”
Nat. Rev. Mol. Cell Biol.
12
(
8
),
517
533
(
2011
).
2.
S.
Watanabe
,
Q.
Liu
,
M. W.
Davis
,
G.
Hollopeter
,
N.
Thomas
,
N. B.
Jorgensen
, and
E. M.
Jorgensen
, “
Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions
,”
eLife
2
,
e00723
(
2013
).
3.
S. M.
Abel
,
J. P.
Roose
,
J. T.
Groves
,
A.
Weiss
, and
A. K.
Chakraborty
, “
The membrane environment can promote or suppress bistability in cell signaling networks
,”
J. Phys. Chem. B
116
(
11
),
3630
3640
(
2012
).
4.
S. A.
Ramirez
,
M.
Pablo
,
S.
Burk
,
D. J.
Lew
, and
T. C.
Elston
, “
A novel stochastic simulation approach enables exploration of mechanisms for regulating polarity site movement
,”
bioRxiv
(
2020
).
5.
H. J.
Green
and
N. H.
Brown
, “
Integrin intracellular machinery in action
,”
Exp. Cell Res.
378
(
2
),
226
231
(
2019
).
6.
J.
Halatek
,
F.
Brauns
, and
E.
Frey
, “
Self-organization principles of intracellular pattern formation
,”
Philos. Trans. R. Soc., B
373
(
1747
),
20170107
(
2018
).
7.
I. V.
Gopich
,
A. A.
Ovchinnikov
, and
A.
Szabo
, “
Long-time tails in the kinetics of reversible bimolecular reactions
,”
Phys. Rev. Lett.
86
(
5
),
922
925
(
2001
).
8.
I.
Gopich
and
A.
Szabo
, “
Asymptotic relaxation of reversible bimolecular chemical reactions
,”
Chem. Phys.
284
,
91
102
(
2002
).
9.
U. C.
Täuber
,
M.
Howard
, and
B. P.
Vollmayr-Lee
, “
Applications of field-theoretic renormalization group methods to reaction-diffusion problems
,”
J. Phys. A: Math. Gen.
38
(
17
),
R79
R131
(
2005
).
10.
O. N.
Yogurtcu
and
M. E.
Johnson
, “
Theory of Bi-molecular association dynamics in 2D for accurate model and experimental parameterization of binding rates
,”
J. Chem. Phys.
143
(
8
),
084117
(
2015
).
11.
D.
Fange
,
O. G.
Berg
,
P.
Sjoberg
, and
J.
Elf
, “
Stochastic reaction-diffusion kinetics in the microscopic limit
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
46
),
19820
19825
(
2010
).
12.
S.
Hellander
,
A.
Hellander
, and
L.
Petzold
, “
Reaction-diffusion master equation in the microscopic limit
,”
Phys. Rev. E
85
(
4
),
042901
(
2012
).
13.
S.
Iyer-Biswas
and
A.
Zilman
, “
First-passage processes in cellular biology
,”
Adv. Chem. Phys.
160
,
261
306
(
2016
).
14.
D. F.
Calef
and
J. M.
Deutch
, “
Diffusion-controlled reactions
,”
Annu. Rev. Phys. Chem.
34
,
493
524
(
1983
).
15.
A.
Szabo
,
K.
Schulten
, and
Z.
Schulten
, “
First passage time approach to diffusion controlled reactions
,”
J. Chem. Phys.
72
(
8
),
4350
4357
(
1980
).
16.
A.
Godec
and
R.
Metzler
, “
Universal proximity effect in target search kinetics in the few-encounter limit
,”
Phys. Rev. X
6
(
4
),
041037
(
2016
).
17.
O.
Bénichou
,
C.
Chevalier
,
J.
Klafter
,
B.
Meyer
, and
R.
Voituriez
, “
Geometry-controlled kinetics
,”
Nat. Chem.
2
(
6
),
472
477
(
2010
).
18.
G.
Schreiber
,
G.
Haran
, and
H.-X.
Zhou
, “
Fundamental aspects of protein–protein association kinetics
,”
Chem. Rev.
109
(
3
),
839
860
(
2009
).
19.
F. C.
Collins
and
G. E.
Kimball
, “
Diffusion-controlled reaction rates
,”
J. Colloid Sci.
4
(
4
),
425
437
(
1949
).
20.
C. H.
Bamford
,
The Theory of Kinetics
(
Elsevier
,
New York
,
1969
).
21.
I. V.
Gopich
and
A.
Szabo
, “
Diffusion-induced competitive two-site binding
,”
J. Chem. Phys.
150
(
9
),
094104
(
2019
).
22.
I. V.
Gopich
, “
Multisite reversible association in membranes and solutions: From non-Markovian to Markovian kinetics
,”
J. Chem. Phys.
152
(
10
),
104101
(
2020
).
23.
G.
Wilemski
and
M.
Fixman
, “
Diffusion-controlled intrachain reactions of polymers. I. Theory
,”
J. Chem. Phys.
60
(
3
),
866
877
(
1974
).
24.
M.
Karplus
and
D. L.
Weaver
, “
Diffusion-collision model for protein folding
,”
Biopolymers
18
(
6
),
1421
1437
(
1979
).
25.
M.
Varga
,
Y.
Fu
,
S.
Loggia
,
O. N.
Yogurtcu
, and
M. E.
Johnson
, “
NERDSS: A nonequilibrium simulator for multibody self-assembly at the cellular scale
,”
Biophys. J.
118
(
12
),
P3026
P3040
(
2020
).
26.
K.
Takahashi
,
S.
Tanase-Nicola
, and
P. R.
ten Wolde
, “
Spatio-temporal correlations can drastically change the response of a MAPK pathway
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
6
),
2473
2478
(
2010
).
27.
S.
Sarkar
, “
Concentration dependence of diffusion-limited reaction rates and its consequences
,”
Phys. Rev. X
10
(
4
),
041032
(
2020
).
28.
M. E.
Johnson
,
A.
Chen
,
J. R.
Faeder
,
P.
Henning
,
I. I.
Moraru
,
M.
Meier-Schellersheim
,
R. F.
Murphy
,
T.
Prüstel
,
J. A.
Theriot
, and
A. M.
Uhrmacher
, “
Quantifying the roles of space and stochasticity in computer simulations for cell biology and biochemistry
,”
Mol. Biol. Cell
32
,
186
210
(
2021
).
29.
G.
Adam
and
M.
Delbruck
, “
Reduction of dimensionality in biological diffusion processes
,” in
Structural Chemistry and Molecular Biology
(
Freeman
,
San Francisco
,
1968
), pp.
198
215
.
30.
H. C.
Berg
and
E. M.
Purcell
, “
Physics of chemoreception
,”
Biophys. J.
20
(
2
),
193
219
(
1977
).
31.
O.
Benichou
,
D.
Grebenkov
,
P.
Levitz
,
C.
Loverdo
, and
R.
Voituriez
, “
Optimal reaction time for surface-mediated diffusion
,”
Phys. Rev. Lett.
105
(
15
),
150606
(
2010
).
32.
P. H.
von Hippel
and
O. G.
Berg
, “
Facilitated target location in biological systems
,”
J. Biol. Chem.
264
(
2
),
675
678
(
1989
).
33.
J.
Elf
,
G.-W.
Li
, and
X. S.
Xie
, “
Probing transcription factor dynamics at the single-molecule level in a living cell
,”
Science
316
(
5828
),
1191
1194
(
2007
).
34.
B. N.
Kholodenko
,
J. B.
Hoek
, and
H. V.
Westerhoff
, “
Why cytoplasmic signalling proteins should be recruited to cell membranes
,”
Trends Cell Biol.
10
(
5
),
173
178
(
2000
).
35.
S. M.
Christensen
,
H.-L.
Tu
,
J. E.
Jun
,
S.
Alvarez
,
M. G.
Triplet
,
J. S.
Iwig
,
K. K.
Yadav
,
D.
Bar-Sagi
,
J. P.
Roose
, and
J. T.
Groves
, “
One-way membrane trafficking of SOS in receptor-triggered Ras activation
,”
Nat. Struct. Mol. Biol.
23
(
9
),
838
846
(
2016
).
36.
A. P.
Minton
, “
Confinement as a determinant of macromolecular structure and reactivity. II. Effects of weakly attractive interactions between confined macrosolutes and confining structures
,”
Biophys. J.
68
(
4
),
1311
1322
(
1995
).
37.
O. N.
Yogurtcu
and
M. E.
Johnson
, “
Cytosolic proteins can exploit membrane localization to trigger functional assembly
,”
PLoS Comput. Biol.
14
(
3
),
e1006031
(
2018
).
38.
P. N.
Dannhauser
and
E. J.
Ungewickell
, “
Reconstitution of clathrin-coated bud and vesicle formation with minimal components
,”
Nat. Cell Biol.
14
(
6
),
634
639
(
2012
).
39.
I.
Langmuir
, “
The adsorption of gases on plane surfaces of glass, mica and platinum
,”
J. Am. Chem. Soc.
40
,
1361
1403
(
1918
).
40.
M.
von Smoluchowski
, “
Attempt to derive a mathematical theory of coagulation kinetics in colloidal solutions
,”
Z. Phys. Chem.
92
,
129
(
1917
).
41.
M. E.
Johnson
and
G.
Hummer
, “
Free-propagator reweighting integrator for single-particle dynamics in reaction-diffusion models of heterogeneous protein–protein interaction systems
,”
Phys. Rev. X
4
(
3
),
031037
(
2014
).
42.
S. A.
Rice
,
Diffusion Limited Reactions
(
Elsevier Science and Technology
,
The Netherlands
,
1985
), Vol. 25.
43.
Y.
Wu
,
J.
Vendome
,
L.
Shapiro
,
A.
Ben-Shaul
, and
B.
Honig
, “
Transforming binding affinities from three dimensions to two with application to cadherin clustering
,”
Nature
475
(
7357
),
510
513
(
2011
).
44.
J.
Hu
,
R.
Lipowsky
, and
T. R.
Weikl
, “
Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
38
),
15283
15288
(
2013
).
45.
A.
Vijaykumar
,
P. R.
ten Wolde
, and
P. G.
Bolhuis
, “
Generalised expressions for the association and dissociation rate constants of molecules with multiple binding sites
,”
Mol. Phys.
116
(
21-22
),
3042
3054
(
2018
).
46.
Y.
Fu
,
O. N.
Yogurtcu
,
R.
Kothari
,
G.
Thorkelsdottir
,
A. J.
Sodt
, and
M. E.
Johnson
, “
An implicit lipid model for efficient reaction-diffusion simulations of protein binding to surfaces of arbitrary topology
,”
J. Chem. Phys.
151
(
12
),
124115
(
2019
).
47.
A. A.
Ovchinnikov
and
Y. B.
Zeldovich
, “
Role of density fluctuations in bimolecular reaction-kinetics
,”
Chem. Phys.
28
(
1-2
),
215
218
(
1978
).
48.
D.
Toussaint
and
F.
Wilczek
, “
Particle antiparticle annihilation in diffusive motion
,”
J. Chem. Phys.
78
(
5
),
2642
2647
(
1983
).
49.
G.
Zumofen
,
A.
Blumen
, and
J.
Klafter
, “
Concentration fluctuations in reaction-kinetics
,”
J. Chem. Phys.
82
(
7
),
3198
3206
(
1985
).
50.
K. C.
Huang
,
Y.
Meir
, and
N. S.
Wingreen
, “
Dynamic structures in Escherichia coli: Spontaneous formation of MinE rings and MinD polar zones
,”
Proc. Natl. Acad. Sci. U. S. A.
100
(
22
),
12724
12728
(
2003
).
51.
J.
Denk
,
S.
Kretschmer
,
J.
Halatek
,
C.
Hartl
,
P.
Schwille
, and
E.
Frey
, “
MinE conformational switching confers robustness on self-organized Min protein patterns
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
18
),
4553
4558
(
2018
).
52.
J.
Halatek
and
E.
Frey
, “
Highly canalized MinD transfer and MinE sequestration explain the origin of robust MinCDE-protein dynamics
,”
Cell Rep.
1
(
6
),
741
752
(
2012
).
53.
A.
Amiranashvili
,
N. D.
Schnellbacher
, and
U. S.
Schwarz
, “
Stochastic switching between multistable oscillation patterns of the Min-system
,”
New J. Phys.
18
,
093049
(
2016
).
54.
A. A.
Hyman
,
C. A.
Weber
, and
F.
Jülicher
, “
Liquid-liquid phase separation in biology
,”
Annu. Rev. Cell Dev. Biol.
30
,
39
58
(
2014
).
55.
S.
Boeynaems
,
S.
Alberti
,
N. L.
Fawzi
,
T.
Mittag
,
M.
Polymenidou
,
F.
Rousseau
,
J.
Schymkowitz
,
J.
Shorter
,
B.
Wolozin
,
L.
Van Den Bosch
,
P.
Tompa
, and
M.
Fuxreiter
, “
Protein phase separation: A new phase in cell biology
,”
Trends Cell Biol.
28
(
6
),
420
435
(
2018
).
56.
Y. G.
Zhao
and
H.
Zhang
, “
Phase separation in membrane biology: The interplay between membrane-bound organelles and membraneless condensates
,”
Dev. Cell
55
(
1
),
30
44
(
2020
).
57.
K. J.
Day
,
G.
Kago
,
L.
Wang
,
J. B.
Richter
,
C. C.
Hayden
,
E. M.
Lafer
, and
J. C.
Stachowiak
, “
Liquid-like protein interactions catalyse assembly of endocytic vesicles
,”
Nat. Cell Bio.
23
(
4
),
366
376
(
2021
).
58.
C.
Chen
,
C. C.
Kao
, and
B.
Dragnea
, “
Self-assembly of brome mosaic virus capsids: Insights from shorter time-scale experiments
,”
J. Phys. Chem. A
112
(
39
),
9405
9412
(
2008
).
59.
M. F.
Hagan
, “
Modeling viral capsid assembly
,”
Adv. Chem. Phys.
155
,
1
68
(
2014
).
60.
R.
Yvinec
,
M. R.
D’Orsogna
, and
T.
Chou
, “
First passage times in homogeneous nucleation and self-assembly
,”
J. Chem. Phys.
137
(
24
),
244107
(
2012
).
61.
R.
Yvinec
,
S.
Bernard
,
E.
Hingant
, and
L.
Pujo-Menjouet
, “
First passage times in homogeneous nucleation: Dependence on the total number of particles
,”
J. Chem. Phys.
144
(
3
),
034106
(
2016
).
62.
M. F.
Hagan
and
O. M.
Elrad
, “
Understanding the concentration dependence of viral capsid assembly kinetics—The origin of the lag time and identifying the critical nucleus size
,”
Biophys. J.
98
(
6
),
1065
1074
(
2010
).
63.
M. E.
Johnson
, “
Modeling the self-assembly of protein complexes through a rigid-body rotational reaction-diffusion algorithm
,”
J. Phys. Chem. B
122
(
49
),
11771
11783
(
2018
).
64.
M. F.
Hagan
,
O. M.
Elrad
, and
R. L.
Jack
, “
Mechanisms of kinetic trapping in self-assembly and phase transformation
,”
J. Chem. Phys.
135
(
10
),
104115
(
2011
).
65.
M.
Thomas
and
R.
Schwartz
, “
Quantitative computational models of molecular self-assembly in systems biology
,”
Phys. Biol.
14
(
3
),
035003
(
2017
).

Supplementary Material

You do not currently have access to this content.