In this work, we propose an improved methodology to compute the intrinsic friction coefficient at the liquid–solid (L–S) interface based on the theoretical model developed by Hansen et al. [Phys. Rev. E 84, 016313 (2011)]. Using equilibrium molecular dynamics, we apply our method to estimate the interfacial friction for a simple Lennard-Jones system of argon confined between graphene sheets and a system of water confined between graphene sheets. Our new method shows smaller statistical errors for the friction coefficient than the previous procedure suggested by Hansen et al. Since we only use the interfacial particles, the interfacial friction calculated using our method is solely due to the wall–fluid interactions and is devoid of bulk fluid contributions. The intrinsic nature of the friction coefficient has been validated by measuring the friction coefficient at different interfaces and channel sizes and against direct non-equilibrium molecular dynamics measurements. Our improved methodology is found to be more reliable than the existing equilibrium and non-equilibrium methods and does not suffer from the well-known convergence and correlation-time ambiguities in the methods formulated along Green–Kubo-like ideas.

1.
R. B.
Schoch
,
J.
Han
, and
P.
Renaud
,
Rev. Mod. Phys.
80
,
839
(
2008
).
2.
J. C. T.
Eijkel
and
A.
van den Berg
,
Microfluid. Nanofluid.
1
,
249
(
2005
).
3.
L.
Bocquet
and
E.
Charlaix
,
Chem. Soc. Rev.
39
,
1073
(
2010
).
4.
W.
Sparreboom
,
A.
van den Berg
, and
J. C. T.
Eijkel
,
New J. Phys.
12
,
015004
(
2010
).
5.
J. S.
Hansen
,
J. C.
Dyre
,
P. J.
Daivis
,
B. D.
Todd
, and
H.
Bruus
,
Phys. Rev. E
84
,
036311
(
2011
).
6.
J. S.
Hansen
,
J. C.
Dyre
,
P.
Daivis
,
B. D.
Todd
, and
H.
Bruus
,
Langmuir
31
,
13275
(
2015
).
7.
G.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Microflows and Nanoflows: Fundamentals and Simulation
(
Springer Science & Business Media
,
2006
), Vol. 29.
8.
C.
Navier
,
Mem. Acad. Sci. Inst. Fr.
6
,
1827
(
1827
).
9.
L. G.
Leal
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
(
Cambridge University Press
,
2007
), Vol. 7.
10.
D. J.
Evans
and
G. P.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
(
ANU Press
,
2007
).
11.
B. D.
Todd
and
P. J.
Daivis
,
Nonequilibrium Molecular Dynamics: Theory, Algorithms and Applications
(
Cambridge University Press
,
2017
).
12.
M.
Heiranian
and
N. R.
Aluru
,
ACS Nano
14
,
272
(
2019
).
13.
P. A.
Thompson
and
S. M.
Troian
,
Nature
389
,
360
(
1997
).
14.
S. K.
Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
,
J. Chem. Phys.
135
,
144701
(
2011
).
15.
S. K.
Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
,
J. Chem. Phys.
136
,
024705
(
2012
).
16.
L.
Bocquet
and
J.-L.
Barrat
,
Phys. Rev. E
49
,
3079
(
1994
).
17.
L.
Bocquet
and
J.-L.
Barrat
,
J. Chem. Phys.
139
,
044704
(
2013
).
18.
J.
Petravic
and
P.
Harrowell
,
J. Chem. Phys.
127
,
174706
(
2007
).
19.
J. S.
Hansen
,
B. D.
Todd
, and
P. J.
Daivis
,
Phys. Rev. E
84
,
016313
(
2011
).
20.
K.
Huang
and
I.
Szlufarska
,
Phys. Rev. E
89
,
032119
(
2014
).
21.
P.
Español
and
I.
Zúñiga
,
J. Chem. Phys.
98
,
574
(
1993
).
22.
L.
Bocquet
,
J.-P.
Hansen
, and
J.
Piasecki
,
J. Stat. Phys.
89
,
321
(
1997
).
23.
R.
Fisher
and
R.
Watts
,
Aust. J. Phys.
25
,
21
(
1972
).
24.
S. I.
Smedley
and
L. V.
Woodcock
,
J. Chem. Soc., Faraday Trans. 2
70
,
955
(
1974
).
25.
P.
Español
,
J. A.
de la Torre
, and
D.
Duque-Zumajo
,
Phys. Rev. E
99
,
022126
(
2019
).
26.
H.
Nakano
and
S.-i.
Sasa
,
J. Stat. Phys.
176
,
312
(
2019
).
27.
H.
Oga
,
Y.
Yamaguchi
,
T.
Omori
,
S.
Merabia
, and
L.
Joly
,
J. Chem. Phys.
151
,
054502
(
2019
).
28.
J. A.
de la Torre
,
D.
Duque-Zumajo
,
D.
Camargo
, and
P.
Español
,
Phys. Rev. Lett.
123
,
264501
(
2019
).
29.
H.
Nakano
and
S.-i.
Sasa
,
Phys. Rev. E
101
,
033109
(
2020
).
30.
V. P.
Sokhan
and
N.
Quirke
,
Phys. Rev. E
78
,
015301
(
2008
).
31.
A.
Niavarani
and
N. V.
Priezjev
,
Phys. Rev. E
77
,
041606
(
2008
).
32.
J.-L.
Barrat
and
L.
Bocquet
,
Faraday Discuss.
112
,
119
(
1999
).
33.
P. A.
Thompson
and
M. O.
Robbins
,
Phys. Rev. A
41
,
6830
(
1990
).
34.
N. V.
Priezjev
,
Phys. Rev. E
75
,
051605
(
2007
).
35.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
36.
37.
L.
Lindsay
and
D. A.
Broido
,
Phys. Rev. B
81
,
205441
(
2010
).
38.
R. L.
Rowley
and
M. M.
Painter
,
Int. J. Thermophys.
18
,
1109
(
1997
).
39.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
40.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
,
J. Chem. Phys.
124
,
024503
(
2006
).
41.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
42.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
,
J. Phys. Chem. B
107
,
1345
(
2003
).
43.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
McGraw-Hill
,
New York
,
1981
).
44.
I.-C.
Yeh
and
M. L.
Berkowitz
,
J. Chem. Phys.
111
,
3155
(
1999
).
45.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
46.
C. L.
Brooks
,
J. Solution Chem.
18
,
99
(
1989
).
47.
M.
Cieplak
,
J.
Koplik
, and
J. R.
Banavar
,
Phys. Rev. Lett.
86
,
803
(
2001
).
48.
K.
Falk
,
F.
Sedlmeier
,
L.
Joly
,
R. R.
Netz
, and
L.
Bocquet
,
Nano Lett.
10
,
4067
(
2010
).
49.
G.
Tocci
,
L.
Joly
, and
A.
Michaelides
,
Nano Lett.
14
,
6872
(
2014
).
50.
B. D.
Todd
,
D. J.
Evans
, and
P. J.
Daivis
,
Phys. Rev. E
52
,
1627
(
1995
).
51.
K. P.
Travis
,
B. D.
Todd
, and
D. J.
Evans
,
Phys. Rev. E
55
,
4288
(
1997
).
You do not currently have access to this content.