The time scales of structural relaxation are investigated on the basis of five different response functions for 1,2, 6-hexanetriol, a hydrogen-bonded liquid with a minor secondary contribution, and 2,6,10,15,19,23-hexamethyl-tetracosane (squalane), a van der Waals-bonded liquid with a prominent secondary relaxation process. Time scales of structural relaxation are derived as inverse peak frequencies for each investigated response function. For 1,2,6-hexanetriol, the ratios of the time scales are temperature-independent, while a decoupling of time scales is observed for squalane in accordance with the literature. An alternative evaluation approach is made on the squalane data, extracting time scales from the terminal relaxation mode instead of the peak position, and in this case, temperature-independent time-scale ratios are also found for squalane, despite its strong secondary relaxation contribution. Interestingly, the very same ordering of response-function-specific time scales is observed for these two liquids, which is also consistent with the observation made for simple van der Waals-bonded liquids reported previously [Jakobsen et al., J. Chem. Phys. 136, 081102 (2012)]. This time-scale ordering is based on the following response functions, from fast to slow dynamics: shear modulus, bulk modulus, dielectric permittivity, longitudinal thermal expansivity coefficient, and longitudinal specific heat. These findings indicate a general relation between the time scales of different response functions and, as inter-molecular interactions apparently play a subordinate role, suggest a rather generic nature of the process of structural relaxation.

1.
C.
Angell
, “
Strong and fragile liquids
,” in
Relaxations in Complex Systems
, edited by
K. L.
Ngai
and
G. B.
Wright
(
U.S. GPO, Washington, DC
,
1985
), pp.
3
11
.
2.
J. C.
Dyre
, “
The glass transition and elastic models of glass-forming liquids
,”
Rev. Mod. Phys.
78
,
953
972
(
2006
).
3.
Y. S.
Elmatad
,
D.
Chandler
, and
J. P.
Garrahan
, “
Corresponding states of structural glass formers
,”
J. Phys. Chem. B
113
(
16
),
5563
5567
(
2009
).
4.
F.
Pabst
,
J.
Gabriel
,
P.
Weigl
, and
T.
Blochowicz
, “
Molecular dynamics of supercooled ionic liquids studied by light scattering and dielectric spectroscopy
,”
Chem. Phys.
494
,
103
110
(
2017
).
5.
E.
Shoifet
,
G.
Schulz
, and
C.
Schick
, “
Temperature modulated differential scanning calorimetry—Extension to high and low frequencies
,”
Thermochim. Acta
603
,
227
236
(
2015
), part of Special Issue on Chip Calorimetry.
6.
L. A.
Roed
,
T.
Hecksher
,
J. C.
Dyre
, and
K.
Niss
, “
Generalized single-parameter aging tests and their application to glycerol
,”
J. Chem. Phys.
150
(
4
),
044501
(
2019
).
7.
G.
Harrison
,
The Dynamic Properties of Supercooled Liquids
(
Academic
,
London
,
1976
).
8.
B.
Jakobsen
,
T.
Hecksher
,
T.
Christensen
,
N. B.
Olsen
,
J. C.
Dyre
, and
K.
Niss
, “
Communication: Identical temperature dependence of the time scales of several linear-response functions of two glass-forming liquids
,”
J. Chem. Phys.
136
,
081102
(
2012
).
9.
F.
Stickel
,
E. W.
Fischer
, and
R.
Richert
, “
Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data
,”
J. Chem. Phys.
104
(
5
),
2043
2055
(
1996
).
10.
C.
Hansen
,
F.
Stickel
,
T.
Berger
,
R.
Richert
, and
E. W.
Fischer
, “
Dynamics of glass-forming liquids. III. Comparing the dielectric α- and β-relaxation of 1-propanol and o-terphenyl
,”
J. Chem. Phys.
107
(
4
),
1086
1093
(
1997
).
11.
R.
Richert
,
K.
Duvvuri
, and
L.-T.
Duong
, “
Dynamics of glass-forming liquids. VII. Dielectric relaxation of supercooled tris-naphthylbenzene, squalane, and decahydroisoquinoline
,”
J. Chem. Phys.
118
(
4
),
1828
1836
(
2003
).
12.
The Scaling of Relaxation Processes
, edited by
F.
Kremer
and
A.
Loidl
(
Springer
,
2018
).
13.
T.
Christensen
and
N. B.
Olsen
, “
Comparative measurements of the electrical and shear mechanical response functions in some supercooled liquids
,”
J. Non-Cryst. Solids
172-174
,
357
361
(
1994
).
14.
M.
Cutroni
and
A.
Mandanici
, “
The α-relaxation process in simple glass forming liquid m-toluidine. II. The temperature dependence of the mechanical response
,”
J. Chem. Phys.
114
(
16
),
7124
7129
(
2001
).
15.
B.
Jakobsen
,
K.
Niss
, and
N. B.
Olsen
, “
Dielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids
,”
J. Chem. Phys.
123
,
234511
(
2005
).
16.
T.
Christensen
and
N. B.
Olsen
, “
Quasistatic measurement of the frequency-dependent bulk and shear modulus of supercooled liquids
,”
J. Non-Cryst. Solids
172-174
,
362
364
(
1994
).
17.
T.
Hecksher
,
N. B.
Olsen
,
K. A.
Nelson
,
J. C.
Dyre
, and
T.
Christensen
, “
Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducers
,”
J. Chem. Phys.
138
(
12
),
12A543
(
2013
).
18.
D.
Gundermann
,
K.
Niss
,
T.
Christensen
,
J. C.
Dyre
, and
T.
Hecksher
, “
The dynamic bulk modulus of three glass-forming liquids
,”
J. Chem. Phys.
140
,
244508
(
2014
).
19.
L. A.
Roed
,
K.
Niss
, and
B.
Jakobsen
, “
Communication: High pressure specific heat spectroscopy reveals simple relaxation behavior of glass forming molecular liquid
,”
J. Chem. Phys.
143
(
22
),
221101
(
2015
).
20.
R.
Casalini
,
S. S.
Bair
, and
C. M.
Roland
, “
Density scaling and decoupling in o-terphenyl, salol, and dibutyphthalate
,”
J. Chem. Phys.
145
(
6
),
064502
(
2016
).
21.
R.
Zorn
,
F. I.
Mopsik
,
G. B.
McKenna
,
L.
Willner
, and
D.
Richter
, “
Dynamics of polybutadienes with different microstructures. 2. Dielectric response and comparisons with rheological behavior
,”
J. Chem. Phys.
107
(
9
),
3645
3655
(
1997
).
22.
B.
Jakobsen
,
C.
Maggi
,
T.
Christensen
, and
J. C.
Dyre
, “
Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition
,”
J. Chem. Phys.
129
,
184502
(
2008
).
23.
M. H.
Jensen
,
C.
Gainaru
,
C.
Alba-Simionesco
,
T.
Hecksher
, and
K.
Niss
, “
Slow rheological mode in glycerol and glycerol–water mixtures
,”
Phys. Chem. Chem. Phys.
20
,
1716
1723
(
2018
).
24.
J. P.
Gabriel
,
P.
Zourchang
,
F.
Pabst
,
A.
Helbling
,
P.
Weigl
,
T.
Böhmer
, and
T.
Blochowicz
, “
Intermolecular cross-correlations in the dielectric response of glycerol
,”
Phys. Chem. Chem. Phys.
22
(
20
),
11644
11651
(
2020
).
25.
K.
Niss
and
T.
Hecksher
, “
Perspective: Searching for simplicity rather than universality in glass-forming liquids
,”
J. Chem. Phys.
149
(
23
),
230901
(
2018
).
26.
B.
Igarashi
,
T.
Christensen
,
E. H.
Larsen
,
N. B.
Olsen
,
I. H.
Pedersen
,
T.
Rasmussen
, and
J. C.
Dyre
, “
A cryostat and temperature control system optimized for measuring relaxations of glass-forming liquids
,”
Rev. Sci. Instrum.
79
,
045105
(
2008
).
27.
B.
Igarashi
,
T.
Christensen
,
E. H.
Larsen
,
N. B.
Olsen
,
I. H.
Pedersen
,
T.
Rasmussen
, and
J. C.
Dyre
, “
An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids
,”
Rev. Sci. Instrum.
79
(
4
),
045106
(
2008
).
28.
T.
Christensen
and
N. B.
Olsen
, “
A rheometer for the measurement of a high shear modulus covering more than seven decades of frequency below 50 kHz
,”
Rev. Sci. Instrum.
66
,
5019
(
1995
).
29.
T.
Christensen
and
N. B.
Olsen
, “
Determination of the frequency-dependent bulk modulus of glycerol using a piezoelectric spherical shell
,”
Phys. Rev. B
49
,
15396
(
1994
).
30.
K.
Niss
,
D.
Gundermann
,
T.
Christensen
, and
J. C.
Dyre
, “
Dynamic thermal expansivity of liquids near the glass transition
,”
Phys. Rev. E
85
,
041501
(
2012
).
31.
T.
Christensen
,
N. B.
Olsen
, and
J. C.
Dyre
, “
Can the frequency-dependent isobaric specific heat be measured by thermal effusion methods?
,”
AIP Conf. Proc.
982
,
139
(
2008
), paper presented at the Fifth International Workshop on Complex Systems in Sendai 2007.
32.
B.
Jakobsen
,
N. B.
Olsen
, and
T.
Christensen
, “
Frequency-dependent specific heat from thermal effusion in spherical geometry
,”
Phys. Rev. E
81
,
061505
(
2010
).
33.
J. J.
Papini
,
J. C.
Dyre
, and
T.
Christensen
, “
‘cooling by heating’—Demonstrating the significance of the longitudinal specific heat
,”
Phys. Rev. X
2
(
4
),
041015
(
2012
).
34.
M.
Nakanishi
and
R.
Nozaki
, “
Dynamics and structure of hydrogen-bonding glass formers: Comparison between hexanetriol and sugar alcohols based on dielectric relaxation
,”
Phys. Rev. E
81
,
041501
(
2010
).
35.
T.
Hecksher
,
N. B.
Olsen
, and
J. C.
Dyre
, “
Model for the alpha and beta shear-mechanical properties of supercooled liquids and its comparison to squalane data
,”
J. Chem. Phys.
146
(
15
),
154504
(
2017
).
36.
K.
Niss
,
J. C.
Dyre
, and
T.
Hecksher
, “
Long-time structural relaxation of glass-forming liquids: Simple or stretched exponential?
,”
J. Chem. Phys.
152
(
4
),
041103
(
2020
).
37.
Y. S.
Elmatad
,
D.
Chandler
, and
J. P.
Garrahan
, “
Corresponding states of structural glass formers. II
,”
J. Phys. Chem. B
114
(
51
),
17113
17119
(
2010
).
38.
T.
Blochowicz
,
C.
Gainaru
,
P.
Medick
,
C.
Tschirwitz
, and
E. A.
Rössler
, “
The dynamic susceptibility in glass forming molecular liquids: The search for universal relaxation patterns II
,”
J. Chem. Phys.
124
(
13
),
134503
(
2006
).

Supplementary Material

You do not currently have access to this content.