The porous glass MCM-41 is an important adsorbent to study the process of adsorption of gases onto a cylindrical surface. In this work, we study the adsorption of oxygen, nitrogen, deuterium, and deuteriated methane gases into MCM-41 using a combination of neutron diffraction analysis and atomistic computer modeling to interpret the measured data. Adsorption is achieved by immersing a sample of MCM-41 in a bath of the relevant gas, keeping the gas pressure constant (0.1 MPa), and lowering the temperature in steps toward the corresponding bulk liquid boiling point. All four gases have closely analogous behaviors, with an initial layering of liquid on the inside surface of the pores, followed by a relatively sharp capillary condensation (CC) when the pore becomes filled with dense fluid, signaled by a sharp decrease in the intensity of (100) Bragg diffraction reflection. At the temperature of CC, there is a marked distortion of the hexagonal lattice of pores, as others have seen, which relaxes close to the original structure after CC, and this appears to be accompanied by notable excess heterogeneity along the pore compared to when CC is complete. In none of the four gases studied does the final density of fluid in the pore fully attain the value of the bulk liquid at its boiling point at this pressure, although it does approach that limit closely near the center of the pore, and in all cases, the pronounced layering near the silica interface seen in previous studies is observed here as well.

1.
X. S.
Zhao
,
G. Q.
Lu
, and
G. J.
Millar
,
Ind. Eng. Chem. Res.
35
,
2075
(
1996
).
2.
X. S.
Zhao
,
G. Q.
Lu
,
A. K.
Whittaker
,
G. J.
Millar
, and
H. Y.
Zhu
,
J. Phys. Chem. B
101
,
6525
(
1997
).
3.
A.
Jentys
,
K.
Kleestorfer
, and
H.
Vinek
,
Microporous Mesoporous Mater.
27
,
321
(
1999
).
4.
M.
Ide
,
M.
El-Roz
,
E.
De Canck
,
A.
Vicente
,
T.
Planckaert
,
T.
Bogaerts
,
I.
Van Driessche
,
F.
Lynen
,
V.
Van Speybroeck
,
F.
Thybault-Starzyk
, and
P.
Van Der Voort
,
Phys. Chem. Chem. Phys.
15
,
642
(
2013
).
5.
O.
Glatter
and
O.
Kratky
,
Small Angle Scattering
(
Academic Press
,
1982
).
6.
A. K.
Soper
and
D. T.
Bowron
,
Chem. Phys. Lett.
683
,
529
(
2017
).
7.
A.
Papadopoulou
,
F.
Van Swol
, and
U. M. B.
Marconi
,
J. Chem. Phys.
97
,
6942
(
1992
).
8.
P. J.
Branton
,
P. G.
Hall
, and
K. S. W.
Sing
,
J. Chem. Soc., Chem. Commun.
1993
,
1257
.
9.
P. I.
Ravikovitch
,
S. C. O.
Domhnaill
,
A. V.
Neimark
,
F.
Schueth
, and
K. K.
Unger
,
Langmuir
11
,
4765
(
1995
).
10.
K. J.
Edler
,
P. A.
Reynolds
,
P. J.
Branton
,
F. R.
Trouwb
, and
J. W.
White
,
J. Chem. Soc., Faraday Trans.
93
,
1667
(
1997
).
11.
M.
Kruk
,
M.
Jaroniec
, and
A.
Sayari
,
Langmuir
13
,
6267
(
1997
).
12.
M. W.
Maddox
,
J. P.
Olivier
, and
K. E.
Gubbins
,
Langmuir
13
,
1737
(
1997
).
13.
P. I.
Ravikovitch
,
D.
Wei
,
W. T.
Chueh
,
G. L.
Haller
, and
A. V.
Neimark
,
J. Phys. Chem. B
101
,
3671
(
1997
).
14.
K.
Morishige
and
M.
Shikimi
,
J. Chem. Phys.
108
,
7821
(
1998
).
15.
A. V.
Neimark
,
P. I.
Ravikovitch
,
M.
Grün
,
F.
Schüth
, and
K. K.
Unger
,
J. Colloid Interface Sci.
207
,
159
(
1998
).
16.
K. S. W.
Sing
,
Adv. Colloid Interface Sci.
76-77
,
3
(
1998
).
17.
C. G.
Sonwane
,
S. K.
Bhatia
, and
N.
Calos
,
Ind. Eng. Chem. Res.
37
,
2271
(
1998
).
18.
M.
Jaroniec
,
M.
Kruk
, and
J. P.
Olivier
,
Langmuir
15
,
5410
(
1999
).
19.
M.
Kruk
,
M.
Jaroniec
,
J. M.
Kim
, and
R.
Ryoo
,
Langmuir
15
,
5279
(
1999
).
20.
M. M. L.
Ribeiro Carrott
,
A. J. E.
Candeias
,
P. J. M.
Carrott
,
P. I.
Ravikovitch
,
A. V.
Neimark
, and
A. D.
Sequeira
,
Microporous Mesoporous Mater.
47
,
323
(
2001
).
21.
P.-A.
Albouy
and
A.
Ayral
,
Chem. Mater.
14
,
3391
(
2002
).
22.
K.
Morishige
and
M.
Ito
,
J. Chem. Phys.
117
,
8036
(
2002
).
23.
M.
Thommes
,
R.
Köhn
, and
M.
Fröba
,
Appl. Surf. Sci.
196
,
239
249
(
2002
).
24.
J.-H.
Yun
,
T.
Düren
,
F. J.
Keil
, and
N. A.
Seaton
,
Langmuir
18
,
2693
(
2002
).
25.
S.
Kallus
,
A.
Hahn
, and
J. D.
Ramsay
,
Eur. Phys. J. E
12
,
27
(
2003
).
26.
N.
Floquet
,
J. P.
Coulomb
, and
G.
André
,
Microporous Mesoporous Mater.
72
,
143
(
2004
).
27.
T.
Düren
,
L.
Sarkisov
,
O. M.
Yaghi
, and
R. Q.
Snurr
,
Langmuir
20
,
2683
(
2004
).
28.
A. J.
Palace Carvalho
,
T.
Ferreira
,
A. J.
Estêvão Candeias
, and
J. P.
Prates Ramalho
,
J. Mol. Struct.: THEOCHEM
729
,
65
(
2005
).
29.
B.
Coasne
,
F. R.
Hung
,
R. J.-M.
Pellenq
,
F. R.
Siperstein
, and
K. E.
Gubbins
,
Langmuir
22
,
194
(
2006
).
30.
N.
Muroyama
,
A.
Yoshimura
,
Y.
Kubota
,
K.
Miyasaka
,
T.
Ohsuna
,
R.
Ryoo
,
P. I.
Ravikovitch
,
A. V.
Neimark
,
M.
Takata
, and
O.
Terasaki
,
J. Phys. Chem. C
112
,
10803
(
2008
).
31.
S.
Zhuo
,
Y.
Huang
,
J.
Hu
,
H.
Liu
,
Y.
Hu
, and
J.
Jiang
,
J. Phys. Chem. C
112
,
11295
(
2008
).
32.
Y.
Belmabkhout
and
A.
Sayari
,
Chem. Eng. Sci.
64
,
3729
(
2009
).
33.
34.
B.
Coasne
,
A.
Galarneau
,
F.
Di Renzo
, and
R. J. M.
Pellenq
,
Langmuir
26
,
10872
(
2010
).
35.
M.
Thommes
,
K.
Kaneko
,
A. V.
Neimark
,
J. P.
Olivier
,
F.
Rodriguez-Reinoso
,
J.
Rouquerol
, and
K. S. W.
Sing
,
Pure Appl. Chem.
87
,
1051
(
2015
).
36.
K.
Morishige
,
J. Phys. Chem. C
120
,
22508
(
2016
).
37.
K.
Morishige
and
Y.
Nakamura
,
Langmuir
20
,
4503
(
2004
).
38.
B.
Peng
and
Y.-X.
Yu
,
Langmuir
24
,
12431
(
2008
).
39.
R. J.-M.
Pellenq
,
B.
Coasne
,
R. O.
Denoyel
, and
O.
Coussy
,
Langmuir
25
,
1393
(
2009
).
40.
Y.
He
and
N. A.
Seaton
,
Langmuir
19
,
10132
(
2003
).
41.
C. G.
Sonwane
,
C. W.
Jones
, and
P. J.
Ludovice
,
J. Phys. Chem. B
109
,
23395
(
2005
).
42.
Y.
Jing
,
L.
Wei
,
Y.
Wang
, and
Y.
Yu
,
Chem. Eng. J.
220
,
264
(
2013
).
43.
G. A.
Zickler
,
S.
Jähnert
,
W.
Wagermaier
,
S. S.
Funari
,
G. H.
Findenegg
, and
O.
Paris
,
Phys. Rev. B
73
,
184109
(
2006
).
44.
S.
Jähnert
,
D.
Müter
,
J.
Prass
,
G. A.
Zickler
,
O.
Paris
, and
G. H.
Findenegg
,
J. Phys. Chem. C
113
,
15201
(
2009
).
45.
D. H.
Bangham
and
N.
Fakhoury
,
Proc. R. Soc. London, Ser. A
130
,
81
(
1930
).
46.
D. H.
Bangham
,
N.
Fakhoury
, and
A. F.
Mohamed
,
Proc. R. Soc. London, Ser. A
138
,
162
(
1932
).
47.
D. H.
Bangham
,
N.
Fakhoury
, and
A. F.
Mohamed
,
Proc. R. Soc. London, Ser. A
147
,
152
(
1934
).
48.
D. H.
Bangham
,
Proc. R. Soc. London, Ser. A
147
,
175
(
1934
).
49.
G. W.
Scherer
,
J. Am. Ceram. Soc.
69
,
473
(
1986
).
50.
G.
Günther
,
J.
Prass
,
O.
Paris
, and
M.
Schoen
,
Phys. Rev. Lett.
101
,
086104
(
2008
).
51.
J.
Prass
,
D.
Müter
,
P.
Fratzl
, and
O.
Paris
,
Appl. Phys. Lett.
95
,
083121
(
2009
).
52.
G. Y.
Gor
and
N.
Bernstein
,
Phys. Chem. Chem. Phys.
18
,
9788
(
2016
).
53.
C.
Balzer
,
A. M.
Waag
,
S.
Gehret
,
G.
Reichenauer
,
F.
Putz
,
N.
Hüsing
,
O.
Paris
,
N.
Bernstein
,
G. Y.
Gor
, and
A. V.
Neimark
,
Langmuir
33
,
5592
(
2017
).
55.
D. T.
Bowron
,
A. K.
Soper
,
K.
Jones
,
S.
Ansell
,
S.
Birch
,
J.
Norris
,
L.
Perrott
,
D.
Riedel
,
N. J.
Rhodes
,
S. R.
Wakefield
,
A.
Botti
,
M.-A.
Ricci
,
F.
Grazzi
, and
M.
Zoppi
,
Rev. Sci. Instrum.
81
,
033905
(
2010
).
56.
A. K.
Soper
, “
GudrunN and GudrunX: Programs for correcting raw neutron and x-ray diffraction data to differential scattering cross section
,” Technical Report No. RAL-TR-2011-013,
UKRI Science and Technology Facilities Council
,
UK
,
2011
, available at https://epubs.stfc.ac.uk/work/56240.
57.
See https://isis.stfc.ac.uk/Pages/Gudrun.aspx for UKRI Science and Technology Facilities Council, UK,
2020
, last accessed 11 November 2020.
58.
A. K.
Soper
,
ISRN Phys. Chem.
2013
,
279463
.
59.
R.
Mancinelli
,
S.
Imberti
,
A. K.
Soper
,
K. H.
Liu
,
C. Y.
Mou
,
F.
Bruni
, and
M. A.
Ricci
,
J. Phys. Chem. B
113
,
16169
(
2009
).
61.
Y.
Inamura
,
M.
Arai
,
M.
Nakamura
,
T.
Otomo
,
N.
Kitamura
,
S. M.
Bennington
,
A. C.
Hannon
, and
U.
Buchenau
,
J. Non-Cryst. Solids
293-295
,
389
(
2001
).
62.
G. T.
Brower
and
G.
Thodos
,
J. Chem. Eng. Data
13
,
262
(
1968
).
63.
H.
Brechna
,
W. A.
Tuttle
,
R. G.
Stewart
, and
J. E.
Jensen
, “
Selected cryogenic data notebook
,” Technical Report No. BNL 10200-R,
Brookhaven National Laboratory
,
New York
,
1980
.
64.
G. T.
Armstrong
,
F. G.
Brickwedde
, and
R. B.
Scott
,
J. Res. Natl. Bur. Stand.
55
,
39
(
1955
).
65.
D. F. R.
Mildner
and
P. L.
Hall
,
J. Phys. D: Appl. Phys.
19
,
1535
(
1986
).
66.
P. W.
Schmidt
,
A.
Höhr
,
H. B.
Neumann
,
H.
Kaiser
,
D.
Avnir
, and
J. S.
Lin
,
J. Chem. Phys.
90
,
5016
(
1989
).
67.
C. G.
Sonwane
,
S. K.
Bhatia
, and
N. J.
Calos
,
Langmuir
15
,
4603
(
1999
).
68.
S.
Brisard
and
P.
Levitz
,
Phys. Rev. E
87
,
013305
(
2013
).
69.
C. F.
Spencer
and
R. P.
Danner
,
J. Chem. Eng. Data
17
,
236
(
1972
).
70.
A. S.
Friedman
,
D.
White
, and
H. L.
Johnston
,
J. Am. Chem. Soc.
73
,
1310
(
1951
).
71.
D.
Müter
,
S.
Jähnert
,
J. W. C.
Dunlop
,
G. H.
Findenegg
, and
O.
Paris
,
J. Phys. Chem. C
113
,
15211
(
2009
).
72.
R.
Evans
,
U. M. B.
Marconi
, and
P.
Tarazona
,
J. Chem. Soc., Faraday Trans. 2
82
,
1763
(
1986
).
73.
A. Z.
Panagiotopoulos
,
Mol. Phys.
62
,
701
(
1987
).
74.
B. K.
Peterson
,
K. E.
Gubbins
,
G. S.
Heffelfinger
,
U. M. B.
Marconi
, and
F.
van Swol
,
J. Chem. Phys.
88
,
6487
(
1988
).
75.
A.
de Keizer
,
T.
Michalski
, and
G. H.
Findenegg
,
Pure Appl. Chem.
63
,
1495
(
1991
).
76.
M. J.
Bojan
,
A. V.
Vernov
, and
W. A.
Steele
,
Langmuir
8
,
901
(
1992
).
77.
P. I.
Ravikovitch
,
A.
Vishnyakov
, and
A. V.
Neimark
,
Phys. Rev. E
64
,
011602
(
2001
).
78.
B.
Kuchta
,
P.
Llewellyn
,
R.
Denoyel
, and
L.
Firlej
,
Low Temp. Phys.
29
,
880
(
2003
).
79.
S.
Figueroa-Gerstenmaier
,
F. J.
Blas
,
J. B.
Avalos
, and
L. F.
Vega
,
J. Chem. Phys.
118
,
830
(
2003
).
80.
B.
Coasne
and
R. J.-M.
Pellenq
,
J. Chem. Phys.
120
,
2913
(
2004
).
81.
E. A.
Ustinov
,
D. D.
Do
, and
M.
Jaroniec
,
Appl. Surf. Sci.
252
,
1013
(
2005
).
83.
A. K.
Soper
and
D. T.
Bowron
(
2021
). “
Adsorption of simple gases into the porous glass MCM-41
,” ISIS Datasets, UKRI Science and Technology Facilities Council. .
You do not currently have access to this content.