Deep eutectic solvents (DESs) and dilutions thereof (mainly in H2O but also in many other non-aqueous solvents and co-solvent mixtures) have recently attracted great attention. It is well known that DES dilutions exhibit deviations from ideality. Interestingly, the treatment of DES as a mixture of two components or a pseudo-component is by no means trivial when determining deviations in density and, mainly, in viscosity. Herein, we studied aqueous dilutions of one of the most widely studied DES, this is, that composed of choline chloride and urea in a 1:2 molar ratio (e.g., ChCl2U). Using density and viscosity data reported in previous works, we calculated the excess molar volumes (VE) and excess viscosities (ln ηE) considering ChCl2U as either a mixture of two components or a pseudo-component, that is, taking the DES molecular weight as MChCl2U = fChClMChCl + fUMU = 86.58 g mol−1 (with fChCl = 1/3 and fU = 2/3) or as M*ChCl2U = MChCl + 2 MU = 259.74 g mol−1. We found that neither the sign of VE and VE* nor their evolution with temperature was influenced by the use of either MChCl2U or M*ChCl2U, and only the absolute magnitude of the deviation and the DES content (in wt. %) at which the minimum appears exhibited some differences. However, ln ηE and ln ηE* exhibited opposite signs, negative and positive, respectively. The odd achievement of negative ln ηE in aqueous dilutions of ChCl2U characterized by the formation of HB networks suggest the treatment of ChCl2U as a pseudo-component as more appropriate. Moreover, the role played by the presence of U in the evolution of ln ηE* with temperature was also discussed.

1.
A. P.
Abbott
,
G.
Capper
,
D. L.
Davies
,
R. K.
Rasheed
, and
V.
Tambyrajah
, “
Novel solvent properties of choline chloride/urea mixtures
,”
Chem. Commun.
2003
,
70
71
.
2.
M. C.
Gutiérrez
,
M. L.
Ferrer
,
C. R.
Mateo
, and
F.
del Monte
, “
Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures
,”
Langmuir
25
,
5509
5515
(
2009
).
3.
C.
D’Agostino
,
L. F.
Gladden
,
M. D.
Mantle
,
A. P.
Abbott
,
E. I.
Ahmed
,
A. Y. M.
Al-Murshedi
, and
R. C.
Harris
, “
Molecular and ionic diffusion in aqueous - deep eutectic solvent mixtures: probing inter-molecular interactions using PFG NMR
,”
Phys. Chem. Chem. Phys.
17
,
15297
15304
(
2015
).
4.
H.
Passos
,
D. J. P.
Tavares
,
A. M.
Ferreira
,
M. G.
Freire
, and
J. A. P.
Coutinho
, “
Are aqueous biphasic systems composed of deep eutectic solvents ternary or quaternary systems?
,”
ACS Sustainable Chem. Eng.
4
,
2881
2886
(
2016
).
5.
O. S.
Hammond
,
D. T.
Bowron
, and
K. J.
Edler
, “
The effect of water upon deep eutectic solvent nanostructure: An unusual transition from ionic mixture to aqueous solution
,”
Angew. Chem., Int. Ed.
56
,
9782
9785
(
2017
).
6.
E.
Posada
,
N.
López-Salas
,
R. J.
Jiménez Riobóo
,
M. L.
Ferrer
,
M. C.
Gutiérrez
, and
F.
del Monte
, “
Reline aqueous solutions behaving as liquid mixtures of H-bond cosolvents: Microphase segregation and formation of co-continuous structures as indicated by Brillouin and 1H NMR spectroscopies
,”
Phys. Chem. Chem. Phys.
19
,
17103
17110
(
2017
).
7.
E.
Posada
,
M. J.
Roldán-Ruiz
,
R. J.
Jiménez Riobóo
,
M. C.
Gutiérrez
,
M. L.
Ferrer
, and
F.
del Monte
, “
Nanophase separation in aqueous dilutions of a ternary DES as revealed by Brillouin and NMR spectroscopy
,”
J. Mol. Liq.
276
,
196
203
(
2019
).
8.
M. J.
Roldán-Ruiz
,
R. J.
Jiménez-Riobóo
,
M. C.
Gutiérrez
,
M. L.
Ferrer
, and
F.
del Monte
, “
Brillouin and NMR spectroscopic studies of aqueous dilutions of malicine: Determining the dilution range for transition from a ‘water-in-DES’ system to a ‘DES-in-water’ one
,”
J. Mol. Liq.
284
,
175
181
(
2019
).
9.
N.
López-Salas
,
J. M.
Vicent-Luna
,
S.
Imberti
,
E.
Posada
,
M. J.
Roldán
,
J. A.
Anta
,
S. R. G.
Balestra
,
R. M.
Madero Castro
,
S.
Calero
,
R. J.
Jiménez-Riobóo
,
M. C.
Gutiérrez
,
M. L.
Ferrer
, and
F.
del Monte
, “
Looking at the ‘water-in-deep-eutectic-solvent’ system: A dilution range for high performance eutectics
,”
ACS Sustainable Chem. Eng.
7
,
17565
17573
(
2019
).
10.
N.
López-Salas
,
J. M.
Vicent-Luna
,
E.
Posada
,
S.
Imberti
,
R. M.
Madero-Castro
,
S.
Calero
,
C. O.
Ania
,
R. J.
Jiménez-Riobóo
,
M. C.
Gutiérrez
,
M. L.
Ferrer
, and
F.
del Monte
, “
Further extending the dilution range of the ‘solvent-in-DES’ regime upon the replacement of water by an organic solvent with hydrogen bond capabilities
,”
ACS Sustainable Chem. Eng.
8
,
12120
12131
(
2020
).
11.
H.
Zhang
,
M. L.
Ferrer
,
R. J.
Jiménez-Riobóo
,
F.
del Monte
, and
M. C.
Gutiérrez
, “
Tools for extending the dilution range of the ‘solvent-in-DES’ regime
,”
J. Mol. Liq.
329
,
115573
(
2021
).
12.
Y.
Xie
,
H.
Dong
,
S.
Zhang
,
X.
Lu
, and
X.
Ji
, “
Effect of water on the density, viscosity, and CO2 solubility in choline chloride/urea
,”
J. Chem. Eng. Data
59
,
3344
3352
(
2014
).
13.
A.
Yadav
and
S.
Pandey
, “
Densities and viscosities of (choline chloride + urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 to 363.15 K
,”
J. Chem. Eng. Data
59
,
2221
2229
(
2014
).
14.
H.
Shekaari
,
M. T.
Zafarani-Moattar
, and
B.
Mohammadi
, “
Thermophysical characterization of aqueous deep eutectic solvent (choline chloride/urea) solutions in full ranges of concentration at T (293.15–323.15) K
,”
J. Mol. Liq.
243
,
451
461
(
2017
).
15.
F. S.
Mjalli
and
H.
Mousa
, “
Viscosity of aqueous ionic liquids analogues as a function of water content and temperature
,”
Chin. J. Chem. Eng.
25
,
1877
1883
(
2017
).
16.
V.
Agieienko
and
R.
Buchner
, “
Densities, viscosities, and electrical conductivities of pure anhydrous reline and its mixtures with water in the temperature range (293.15 to 338.15) K
,”
J. Chem. Eng. Data
64
,
4763
4774
(
2019
).
17.
R. B.
Leron
and
M.-H.
Li
, “
High-pressure density measurements for choline chloride: Urea deep eutectic solvent and its aqueous mixtures at T = (298.15 to 323.15) K and up to 50 MPa
,”
J. Chem. Thermodyn.
54
,
293
301
(
2012
).
18.
D.
Shah
and
F. S.
Mjalli
, “
Effect of water on the thermo-physical properties of reline: An experimental and molecular simulation based approach
,”
Phys. Chem. Chem. Phys.
16
,
23900
23907
(
2014
).
19.
R. B.
Leron
,
A. N.
Soriano
, and
M.-H.
Li
, “
Densities and refractive indices of the deep eutectic solvents (choline chloride + ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from 298.15 to 333.15 K
,”
J. Taiwan Inst. Chem. Eng.
43
,
551
557
(
2012
).
20.
A.
Yadav
,
S.
Trivedi
,
R.
Rai
, and
S.
Pandey
, “
Densities and dynamic viscosities of (choline chloride + glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range (283.15–363.15) K
,”
Fluid Phase Equilib.
367
,
135
142
(
2014
).
21.
Y.
Wang
,
C.
Ma
,
C.
Liu
,
X.
Lu
,
X.
Feng
, and
X.
Ji
, “
Thermodynamic study of choline chloride-based deep eutectic solvents with water and methanol
,”
J. Chem. Eng. Data
65
,
2446
2457
(
2020
).
22.
K.-S.
Kim
and
B. H.
Park
, “
Volumetric properties of solutions of choline chloride + glycerol deep eutectic solvent with water, methanol, ethanol, or iso-propanol
,”
J. Mol. Liq.
254
,
272
279
(
2018
).
23.
A.
Yadav
,
J. R.
Kar
,
M.
Verma
,
S.
Naqvi
, and
S.
Pandey
, “
Densities of aqueous mixtures of (choline chloride + ethylene glycol) and (choline chloride + malonic acid) deep eutectic solvents in temperature range 283.15–363.15 K
,”
Thermochim. Acta
600
,
95
101
(
2015
).
24.
M.
Kuddushi
,
G. S.
Nangala
,
S.
Rajput
,
S. P.
Ijardar
, and
N. I.
Malek
, “
Understanding the peculiar effect of water on the physicochemical properties of choline chloride based deep eutectic solvents theoretically and experimentally
,”
J. Mol. Liq.
278
,
607
615
(
2019
).
25.
Y.
Dai
,
G.-J.
Witkamp
,
R.
Verpoorte
, and
Y. H.
Choi
, “
Tailoring properties of natural deep eutectic solvents with water to facilitate their applications
,”
Food Chem.
187
,
14
19
(
2015
).
26.
V. S.
Protsenko
,
L. S.
Bobrova
, and
F. I.
Danilov
, “
Physicochemical properties of ionic liquid mixtures containing choline chloride, chromium (III) chloride and water: Effects of temperature and water content
,”
Ionics
23
,
637
643
(
2017
).
27.
L. S.
Bobrova
,
F. I.
Danilov
, and
V. S.
Protsenko
, “
Effects of temperature and water content on physicochemical properties of ionic liquids containing CrCl3 · xH2O and choline chloride
,”
J. Mol. Liq.
223
,
48
53
(
2016
).
28.
K. R.
Siongco
,
R. B.
Leron
, and
M.-H.
Li
, “
Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride-glycerol or -ethylene glycol deep eutectic solvents and their aqueous solutions
,”
J. Chem. Thermodyn.
65
,
65
72
(
2013
).
29.
R.
Haghbakhsh
and
S.
Raeissi
, “
Densities and volumetric properties of (choline chloride + urea) deep eutectic solvent and methanol mixtures in the temperature range of 293.15–323.15 K
,”
J. Chem. Thermodyn.
124
,
10
20
(
2018
).
30.
R.
Haghbakhsh
and
S.
Raeissi
, “
Investigation of solutions of ethyl alcohol and the deep eutectic solvent of reline for their volumetric properties
,”
Fluid Phase Equilib.
472
,
39
47
(
2018
).
31.
V.
Agieienko
and
R.
Buchner
, “
Variation of density, viscosity and electrical conductivity of the deep eutectic solvent reline, composed of choline chloride and urea at molar ratio 1:2, mixed with dimethylsulfoxide as a co-solvent
,”
J. Chem. Eng. Data
65
,
1900
1910
(
2020
).
32.
R.
Haghbakhsh
and
S.
Raeissi
, “
Experimental investigation on the volumetric properties of mixtures of the deep eutectic solvent of ethaline and methanol in the temperature range of 283.15 to 323.15 K
,”
J. Chem. Thermodyn.
147
,
106124
(
2020
).
33.
R.
Haghbakhsh
and
S.
Raeissi
, “
A study of non-ideal mixtures of ethanol and the (1 choline chloride +2 ethylene glycol) deep eutectic solvent for their volumetric behaviour
,”
J. Chem. Thermodyn.
150
,
106219
(
2020
).
34.
N. F.
Gajardo-Parra
,
M. J.
Lubben
,
J. M.
Winnert
,
Á.
Leiva
,
J. F.
Brennecke
, and
R. I.
Canales
, “
Physicochemical properties of choline chloride-based deep eutectic solvents and excess properties of their pseudo-binary mixtures with 1-butanol
,”
J. Chem. Thermodyn.
133
,
272
284
(
2019
).
35.
A. R.
Harifi-Mood
and
R.
Buchner
, “
Density, viscosity, and conductivity of choline chloride + ethylene glycol as a deep eutectic solvent and its binary mixtures with dimethyl sulfoxide
,”
J. Mol. Liq.
225
,
689
695
(
2017
).
36.
J.
Kendall
and
K. P.
Monroe
, “
The viscosity of liquids. II. The viscosity-composition curve for ideal liquid mixtures
,”
J. Am. Chem. Soc.
39
,
1787
1802
(
1917
).
37.
P. J.
Carvalho
,
T.
Regueira
,
L. M. N. B. F.
Santos
,
J.
Fernandez
, and
J. A. P.
Coutinho
, “
Effect of water on the viscosities and densities of 1-butyl-3-methylimidazolium dicyanamide and 1-butyl-3-methylimidazolium tricyanomethane at atmospheric pressure
,”
J. Chem. Eng. Data
55
,
645
652
(
2010
).
38.
T.
Zhekenov
,
N.
Toksanbayev
,
Z.
Kazakbayeva
,
D.
Shah
, and
F. S.
Mjalli
, “
Formation of type III deep eutectic solvents and effect of water of their intermolecular interactions
,”
Fluid Phase Equilib.
441
,
43
48
(
2017
).
39.
T.
Zhao
,
J.
Zhang
,
B.
Guo
,
F.
Zhang
,
F.
Sha
,
X.
Xie
, and
X.
Wei
, “
Density, viscosity and spectroscopic studies of the binary system of ethylene glycol + dimethyl sulfoxide at T = (298.15 to 323.15) K
,”
J. Mol. Liq.
207
,
315
322
(
2015
).
40.
A.
Nilsson
and
L. G. M.
Pettersson
, “
The structural origin of anomalous properties of liquid water
,”
Nat. Commun.
6
,
8998
(
2015
).
41.
G.
Kabisch
and
K.
Pollmer
, “
Hydrogen bonding in methanol-organic solvent and methanol-water mixtures as studied by the vCO and vOH Raman bands
,”
J. Mol. Struct.
81
,
35
50
(
1982
).
42.
I. A.
Finneran
,
P. B.
Carroll
,
M. A.
Allodi
, and
G. A.
Blake
, “
Hydrogen bonding in the ethanol–water dimer
,”
Phys. Chem. Chem. Phys.
17
,
24210
24214
(
2015
).
43.
A.
Vrhovšek
,
O.
Gereben
,
A.
Jamnik
, and
L.
Pusztai
, “
Hydrogen bonding and molecular aggregates in liquid methanol, ethanol, and 1-propanol
,”
J. Phys. Chem. B
115
,
13473
13488
(
2011
).
44.
S.
Pothoczki
,
L.
Pusztai
, and
I.
Bakó
, “
Variations of the hydrogen bonding and hydrogen-bonded network in ethanol–water mixtures on cooling
,”
J. Phys. Chem. B
122
,
6790
6800
(
2018
).
45.
S. E.
McLain
,
A. K.
Soper
, and
A.
Luzar
, “
Orientational correlations in liquid acetone and dimethyl sulfoxide: A comparative study
,”
J. Chem. Phys.
124
,
074502
(
2006
).
46.
B. G.
Rao
and
U. C.
Singh
, “
A free energy perturbation study of solvation in methanol and dimethyl sulfoxide
,”
J. Am. Chem. Soc.
112
,
3803
3811
(
1990
).
47.
T.
Shikata
and
N.
Sugimoto
, “
Reconsideration of the anomalous dielectric behavior of dimethyl sulfoxide in the pure liquid state
,”
Phys. Chem. Chem. Phys.
13
,
16542
16547
(
2011
).
48.
R.
Gajda
and
A.
Katrusiak
, “
Electrostatic matching versus close-packing molecular arrangement in compressed dimethyl sulfoxide (DMSO) polymorphs
,”
J. Phys. Chem. B
113
,
2436
2442
(
2009
).
49.
J. E.
Lovelock
and
M. W. H.
Bishop
, “
Prevention of freezing damage to living cells by dimethyl sulphoxide
,”
Nature
183
,
1394
1959
(
1959
).
50.
Y.
Tian
,
X.
Wang
, and
J.
Wang
, “
Densities and viscosities of 1-butyl-3-methylimidazolium tetrafluoroborate + molecular solvent binary mixtures
,”
J. Chem. Eng. Data
53
,
2056
2059
(
2008
).
51.
B.
Mokhtarani
,
A.
Sharifi
,
H. R.
Mortaheb
,
M.
Mirzaei
,
M.
Mafi
, and
F.
Sadeghian
, “
Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures
,”
J. Chem. Thermodyn.
41
,
1432
1438
(
2009
).
52.
I.
Manasi
,
S. J.
Bryant
,
O. S.
Hammond
, and
K. J.
Edler
, “
Chapter Three—Interactions of water and amphiphiles with deep eutectic solvent nanostructures
,”
Adv. Bot. Res.
97
,
41
68
(
2021
).
53.
E. G.
Finer
,
F.
Franks
, and
M. J.
Tait
, “
Nuclear magnetic resonance studies of aqueous urea solutions
,”
J. Am. Chem. Soc.
94
,
4424
4429
(
1972
).
54.
H. S.
Frank
and
F.
Franks
, “
Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker
,”
J. Chem. Phys.
48
,
4746
4757
(
1968
).
55.
A.
Idrissi
,
E.
Cinar
,
S.
Longelin
, and
P.
Damay
, “
The effect of temperature on urea–urea 1185 interactions in water: A molecular dynamics simulation
,”
J. Mol. Liq.
110
,
201
208
(
2004
).
56.
G. E.
Walrafen
, “
Raman spectral studies of the effects of urea and sucrose on water structure
,”
J. Chem. Phys.
44
,
3726
3727
(
1966
).
57.
P.
Baglioni
,
E.
Rivara-Minten
,
L.
Dei
, and
E.
Ferroni
, “
ESR study of sodium dodecyl sulfate and dodecyltrimethylammonium bromide micellar solutions: Effect of urea
,”
J. Phys. Chem.
94
,
8218
8222
(
1990
).
58.
M.
Roseman
and
W. P.
Jencks
, “
Interactions of urea and other polar compounds in water
,”
J. Am. Chem. Soc.
97
,
631
640
(
1975
).
59.
D. M.
Makarov
and
G. I.
Egorov
, “
Density and volumetric properties of the aqueous solutions of urea at temperatures from T = (278 to 333) K and pressures up to 100 MPa
,”
J. Chem. Thermodyn.
120
,
164
173
(
2018
).
60.
M. A.
Motin
,
T. K.
Biswas
, and
E. M.
Huque
, “
Volumetric and viscometric studies of an aqueous urea solution
,”
Phys. Chem. Liq.
40
,
593
605
(
2002
).
61.
J. K.
Carr
,
L. E.
Buchanan
,
J. R.
Schmidt
,
M. T.
Zanni
, and
J. L.
Skinner
, “
Structure and dynamics of urea/water mixtures investigated by vibrational spectroscopy and molecular dynamics simulation
,”
J. Phys. Chem. B
117
,
13291
13300
(
2013
).
62.
S.
Funkner
,
M.
Havenith
, and
G.
Schwaab
, “
Urea, a structure breaker? Answers from THz absorption spectroscopy
,”
J. Phys. Chem. B
116
,
13374
13380
(
2012
).
63.
D.
Bandyopadhyay
,
S.
Mohan
,
S. K.
Ghosh
, and
N.
Choudhury
, “
Molecular dynamics simulation of aqueous urea solution: Is urea a structure breaker?
,”
J. Phys. Chem. B
118
,
11757
11768
(
2014
).
64.
Y. L. A.
Rezus
and
H. J.
Bakker
, “
Effect of urea on the structural dynamics of water
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
18417
18420
(
2006
).
65.
H.
Zhang
,
M. L.
Ferrer
,
M. J.
Roldán-Ruiz
,
R. J.
Jiménez-Riobóo
,
M. C.
Gutiérrez
, and
F.
del Monte
, “
Brillouin spectroscopy as a suitable technique for the determination of the eutectic composition in mixtures of choline chloride and water
,”
J. Phys. Chem. B
124
,
4002
4009
(
2020
).

Supplementary Material

You do not currently have access to this content.