Single-photon sources are required for quantum technologies and can be created from individual atoms and atom-like defects. Erbium ions produce single photons at low-loss fiber optic wavelengths, but they have low emission rates, making them challenging to isolate reliably. Here, we tune the size of gold double nanoholes (DNHs) to enhance the emission of single erbium emitters, achieving 50× enhancement over rectangular apertures previously demonstrated. This produces enough enhancement to show emission from single nanocrystals at wavelengths not seen in our previous work, i.e., 400 and 1550 nm. We observe discrete levels of emission for nanocrystals with low numbers of emitters and demonstrate isolating single emitters. We describe how the trapping time is proportional to the enhancement factor for a given DNH structure, giving us an independent way to measure the enhancement. This shows a promising path to achieving single emitter sources at 1550 nm.

1.
Spectroscopic Properties of Rare Earths in Optical Materials
, Springer Series in Materials Science, edited by
G.
Liu
and
B.
Jacquier
(
Springer-Verlag
,
Berlin Heidelberg
,
2005
).
2.
R.
Kolesov
,
K.
Xia
,
R.
Reuter
,
R.
Stöhr
,
A.
Zappe
,
J.
Meijer
,
P.
Hemmer
, and
J.
Wrachtrup
, “
Optical detection of a single rare-earth ion in a crystal
,”
Nat. Commun.
3
,
1029
(
2012
).
3.
R.
Kolesov
,
K.
Xia
,
R.
Reuter
,
M.
Jamali
,
R.
Stöhr
,
T.
Inal
,
P.
Siyushev
, and
J.
Wrachtrup
, “
Mapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization state
,”
Phys. Rev. Lett.
111
,
120502
(
2013
).
4.
K.
Xia
,
R.
Kolesov
,
Y.
Wang
,
P.
Siyushev
,
R.
Reuter
,
T.
Kornher
,
N.
Kukharchyk
,
A. D.
Wieck
,
B.
Villa
,
S.
Yang
, and
J.
Wrachtrup
, “
All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal
,”
Phys. Rev. Lett.
115
,
093602
(
2015
).
5.
N.
Gisin
, “
How far can one send a photon?
,”
Front. Phys.
10
,
100307
(
2015
).
6.
M. D.
Eisaman
,
J.
Fan
,
A.
Migdall
, and
S. V.
Polyakov
, “
Invited review article: Single-photon sources and detectors
,”
Rev. Sci. Instrum.
82
,
071101
(
2011
).
7.
Y.-A.
Chen
,
Q.
Zhang
,
T.-Y.
Chen
,
W.-Q.
Cai
,
S.-K.
Liao
,
J.
Zhang
,
K.
Chen
,
J.
Yin
,
J.-G.
Ren
,
Z.
Chen
,
S.-L.
Han
,
Q.
Yu
,
K.
Liang
,
F.
Zhou
,
X.
Yuan
,
M.-S.
Zhao
,
T.-Y.
Wang
,
X.
Jiang
,
L.
Zhang
,
W.-Y.
Liu
,
Y.
Li
,
Q.
Shen
,
Y.
Cao
,
C.-Y.
Lu
,
R.
Shu
,
J.-Y.
Wang
,
L.
Li
,
N.-L.
Liu
,
F.
Xu
,
X.-B.
Wang
,
C.-Z.
Peng
, and
J.-W.
Pan
, “
An integrated space-to-ground quantum communication network over 4,600 kilometres
,”
Nature
589
,
214
(
2021
)
8.
E.
Desurvire
,
Erbium-Doped Fiber Amplifiers: Principles and Applications
(
John Wiley and Sons, Inc.
,
1995
)
9.
A. M.
Dibos
,
M.
Raha
,
C. M.
Phenicie
, and
J. D.
Thompson
, “
Atomic source of single photons in the telecom band
,”
Phys. Rev. Lett.
120
,
243601
(
2018
).
10.
W.
Redjem
,
A.
Durand
,
T.
Herzig
,
A.
Benali
,
S.
Pezzagna
,
J.
Meijer
,
A. Y.
Kuznetsov
,
H. S.
Nguyen
,
S.
Cueff
,
J.-M.
Gérard
,
I.
Robert-Philip
,
B.
Gil
,
D.
Caliste
,
P.
Pochet
,
M.
Abbarchi
,
V.
Jacques
,
A.
Dréau
, and
G.
Cassabois
, “
Single artificial atoms in silicon emitting at telecom wavelengths
,”
Nat. Electron.
3
,
738
743
(
2020
).
11.
K.
Groot-Berning
,
T.
Kornher
,
G.
Jacob
,
F.
Stopp
,
S. T.
Dawkins
,
R.
Kolesov
,
J.
Wrachtrup
,
K.
Singer
, and
F.
Schmidt-Kaler
, “
Deterministic single-ion implantation of rare-earth ions for nanometer-resolution color-center generation
,”
Phys. Rev. Lett.
123
,
106802
(
2019
).
12.
A.
Alizadehkhaledi
,
A. L.
Frencken
,
F. C. J. M.
van Veggel
, and
R.
Gordon
, “
Isolating nanocrystals with an individual erbium emitter: A route to a stable single-photon source at 1550 nm wavelength
,”
Nano Lett.
20
,
1018
1022
(
2020
).
13.
P. J.
Schuck
,
D. P.
Fromm
,
A.
Sundaramurthy
,
G. S.
Kino
, and
W. E.
Moerner
, “
Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas
,”
Phys. Rev. Lett.
94
,
017402
(
2005
).
14.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer
,
New York
,
2007
).
15.
D. M.
Wu
,
A.
García-Etxarri
,
A.
Salleo
, and
J. A.
Dionne
, “
Plasmon-enhanced upconversion
,”
J. Phys. Chem. Lett.
5
,
4020
4031
(
2014
).
16.
A.
Teitelboim
,
B.
Tian
,
D. J.
Garfield
,
A.
Fernandez-Bravo
,
A. C.
Gotlin
,
P. J.
Schuck
,
B. E.
Cohen
, and
E. M.
Chan
, “
Energy transfer networks within upconverting nanoparticles are complex systems with collective, robust, and history-dependent dynamics
,”
J. Phys. Chem. C
123
,
2678
2689
(
2019
).
17.
T.
Zhong
,
J. M.
Kindem
,
J. G.
Bartholomew
,
J.
Rochman
,
I.
Craiciu
,
V.
Verma
,
S. W.
Nam
,
F.
Marsili
,
M. D.
Shaw
,
A. D.
Beyer
, and
A.
Faraon
, “
Optically addressing single rare-earth ions in a nanophotonic cavity
,”
Phys. Rev. Lett.
121
,
183603
(
2018
).
18.
B.
Zhou
,
B.
Shi
,
D.
Jin
, and
X.
Liu
, “
Controlling upconversion nanocrystals for emerging applications
,”
Nat. Nanotechnol.
10
,
924
936
(
2015
).
19.
M.
Saboktakin
,
X.
Ye
,
U. K.
Chettiar
,
N.
Engheta
,
C. B.
Murray
, and
C. R.
Kagan
, “
Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays
,”
ACS Nano
7
,
7186
7192
(
2013
).
20.
E.
Verhagen
,
L.
Kuipers
, and
A.
Polman
, “
Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence
,”
Opt. Express
17
,
14586
14598
(
2009
).
21.
A.
Alizadehkhaledi
,
A. L.
Frencken
,
M. K.
Dezfouli
,
S.
Hughes
,
F. C. J. M.
van Veggel
, and
R.
Gordon
, “
Cascaded plasmon-enhanced emission from a single upconverting nanocrystal
,”
ACS Photonics
6
,
1125
1131
(
2019
).
22.
C.
Chen
,
M. L.
Juan
,
Y.
Li
,
G.
Maes
,
G.
Borghs
,
P.
Van Dorpe
, and
R.
Quidant
, “
Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity
,”
Nano Lett.
12
,
125
132
(
2011
).
23.
Y.
Pang
and
R.
Gordon
, “
Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film
,”
Nano Lett.
11
,
3763
3767
(
2011
).
24.
A.
Ashkin
,
J. M.
Dziedzic
,
J. E.
Bjorkholm
, and
S.
Chu
, “
Observation of a single-beam gradient force optical trap for dielectric particles
,”
Opt. Lett.
11
,
288
290
(
1986
).
25.
E.-S.
Kwak
,
T.-D.
Onuta
,
D.
Amarie
,
R.
Potyrailo
,
B.
Stein
,
S. C.
Jacobson
,
W. L.
Schaich
, and
B.
Dragnea
, “
Optical trapping with integrated near-field apertures
,”
J. Phys. Chem. B
108
,
13607
13612
(
2004
).
26.
K.
Okamoto
and
S.
Kawata
, “
Radiation force exerted on subwavelength particles near a nanoaperture
,”
Phys. Rev. Lett.
83
,
4534
4537
(
1999
).
27.
M. L.
Juan
,
R.
Gordon
,
Y.
Pang
,
F.
Eftekhari
, and
R.
Quidant
, “
Self-induced back-action optical trapping of dielectric nanoparticles
,”
Nat. Phys.
5
,
915
919
(
2009
).
28.
B. J.
Roxworthy
,
K. D.
Ko
,
A.
Kumar
,
K. H.
Fung
,
E. K. C.
Chow
,
G. L.
Liu
,
N. X.
Fang
, and
K. C.
Toussaint
, “
Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting
,”
Nano Lett.
12
,
796
801
(
2012
).
29.
M.
Righini
,
A. S.
Zelenina
,
C.
Girard
, and
R.
Quidant
, “
Parallel and selective trapping in a patterned plasmonic landscape
,”
Nat. Phys.
3
,
477
480
(
2007
).
30.
M.
Righini
,
G.
Volpe
,
C.
Girard
,
D.
Petrov
, and
R.
Quidant
, “
Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range
,”
Phys. Rev. Lett.
100
,
186804
(
2008
).
31.
M.
Righini
,
P.
Ghenuche
,
S.
Cherukulappurath
,
V.
Myroshnychenko
,
F. J.
García de Abajo
, and
R.
Quidant
, “
Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas
,”
Nano Lett.
9
,
3387
3391
(
2009
).
32.
A.
Kotnala
and
R.
Gordon
, “
Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer
,”
Nano Lett.
14
,
853
856
(
2014
).
33.
H.
Xu
,
S.
Jones
,
B.-C.
Choi
, and
R.
Gordon
, “
Characterization of individual magnetic nanoparticles in solution by double nanohole optical tweezers
,”
Nano Lett.
16
,
2639
2643
(
2016
).
34.
R. A.
Jensen
,
I.-C.
Huang
,
O.
Chen
,
J. T.
Choy
,
T. S.
Bischof
,
M.
Lončar
, and
M. G.
Bawendi
, “
Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures
,”
ACS Photonics
3
,
423
427
(
2016
).
35.
J.
Berthelot
,
S. S.
Aćimović
,
M. L.
Juan
,
M. P.
Kreuzer
,
J.
Renger
, and
R.
Quidant
, “
Three-dimensional manipulation with scanning near-field optical nanotweezers
,”
Nat. Nanotechnol.
9
,
295
299
(
2014
).
36.
M. U.
Raza
,
S. S. S.
Peri
,
L.-C.
Ma
,
S. M.
Iqbal
, and
G.
Alexandrakis
, “
Self-induced back action actuated nanopore electrophoresis (SANE)
,”
Nanotechnology
29
,
435501
(
2018
).
37.
Q.
Jiang
,
B.
Rogez
,
J.-B.
Claude
,
G.
Baffou
, and
J.
Wenger
, “
Quantifying the role of the surfactant and the thermophoretic force in plasmonic nano-optical trapping
,”
Nano Lett.
20
,
8811
8817
(
2020
).
38.
C.
Hong
,
S.
Yang
, and
J. C.
Ndukaife
, “
Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers
,”
Nat. Nanotechnol.
15
,
908
913
(
2020
).
39.
S. S. S.
Peri
,
M. K.
Sabnani
,
M. U.
Raza
,
E. L.
Urquhart
,
S.
Ghaffari
,
J. S.
Lee
,
M. J.
Kim
,
J.
Weidanz
, and
G.
Alexandrakis
, “
Quantification of low affinity binding interactions between natural killer cell inhibitory receptors and targeting ligands with a self-induced back-action actuated nanopore electrophoresis (sane) sensor
,”
Nanotechnology
32
,
045501
(
2020
).
40.
D.
Verschueren
,
X.
Shi
, and
C.
Dekker
, “
Nano-optical tweezing of single proteins in plasmonic nanopores
,”
Small Methods
3
,
1800465
(
2019
).
41.
F.
Eftekhari
,
C.
Escobedo
,
J.
Ferreira
,
X.
Duan
,
E. M.
Girotto
,
A. G.
Brolo
,
R.
Gordon
, and
D.
Sinton
, “
Nanoholes as nanochannels: Flow-through plasmonic sensing
,”
Anal. Chem.
81
,
4308
4311
(
2009
).
42.
J. F.
Suyver
,
J.
Grimm
,
M. K.
van Veen
,
D.
Biner
,
K. W.
Krämer
, and
H. U.
Güdel
, “
Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+
,”
J. Lumin.
117
,
1
12
(
2006
).
43.
A.
Lesuffleur
,
L. K. S.
Kumar
, and
R.
Gordon
, “
Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film
,”
Appl. Phys. Lett.
88
,
261104
(
2006
).
44.
A.
Lesuffleur
,
L. K. S.
Kumar
,
A. G.
Brolo
,
K. L.
Kavanagh
, and
R.
Gordon
, “
Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film
,”
J. Phys. Chem. C
111
,
2347
2350
(
2007
).
45.
A. L.
Ravindranath
,
M. S.
Shariatdoust
,
S.
Mathew
, and
R.
Gordon
, “
Colloidal lithography double-nanohole optical trapping of nanoparticles and proteins
,”
Opt. Express
27
,
16184
(
2019
).
46.
F.
Wang
,
J.
Wang
, and
X.
Liu
, “
Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles
,”
Angew. Chem., Int. Ed.
49
,
7456
7460
(
2010
).
47.
A.
Kotnala
,
D.
DePaoli
, and
R.
Gordon
, “
Sensing nanoparticles using a double nanohole optical trap
,”
Lab Chip
13
,
4142
4146
(
2013
).
48.
C.
Lee
,
E. Z.
Xu
,
Y.
Liu
,
A.
Teitelboim
,
K.
Yao
,
A.
Fernandez-Bravo
,
A. M.
Kotulska
,
S. H.
Nam
,
Y. D.
Suh
,
A.
Bednarkiewicz
,
B. E.
Cohen
,
E. M.
Chan
, and
P. J.
Schuck
, “
Giant nonlinear optical responses from photon-avalanching nanoparticles
,”
Nature
589
,
230
235
(
2021
).
You do not currently have access to this content.