Confinement has been shown to contribute to the dynamics of small molecules within nanoscale hydrophobic or hydrophilic cavities. Enclosure within a confined space can also influence energy transfer pathways, such as the enhancement of fluorescence over thermal relaxation. In this paper, the effect of confinement on the thermodynamic properties and reaction kinetics of small hydrophobic molecules confined in a soft polymeric template is detailed. A quasi-elastic neutron scattering experiment identified a substantial decrease in translational diffusion of pyrrole after solubilization within a hydrophobic cavity. This decrease in mobility is due to pyrrole’s closer packing and increased density under confinement vs the bulk liquid. The decreased mobility and increased density explain the spontaneous polymerization reaction of pyrrole observed within the cavity. The precise characterization of the polymerization kinetics under confinement found that the reaction is independent of pyrrole concentration, consistent with the close packing density. Kinetic data also show that confinement dimensionality finds a thermodynamic expression in the transition state entropy. The dynamics and kinetics experiments reported here offer rare empirical insight into the important influence that cavity geometry places on the reactions they host.

1.
A. J.
Orr-Ewing
, “
Taking the plunge: Chemical reaction dynamics in liquids
,”
Chem. Soc. Rev.
46
,
7597
7614
(
2017
).
2.
D.
Laage
,
T.
Elsaesser
, and
J. T.
Hynes
, “
Water dynamics in the hydration shells of biomolecules
,”
Chem. Rev.
117
,
10694
10725
(
2017
).
3.
R.
Garcia-Meseguer
and
B. K.
Carpenter
, “
Re-evaluating the transition state for reactions in solution
,”
Eur. J. Org. Chem.
2019
,
254
266
.
4.
S.
Essafi
and
J. N.
Harvey
, “
Rates of molecular vibrational energy transfer in organic solutions
,”
J. Phys. Chem. A
122
,
3535
3540
(
2018
).
5.
K.
Renggli
 et al., “
Selective and responsive nanoreactors
,”
Adv. Funct. Mater.
21
,
1241
1259
(
2011
).
6.
D.
Lensen
,
D. M.
Vriezema
, and
J. C. M.
van Hest
, “
Polymeric microcapsules for synthetic applications
,”
Macromol. Biosci.
8
,
991
1005
(
2008
).
7.
A.
Dhakshinamoorthy
and
H.
Garcia
, “
Catalysis by metal nanoparticles embedded on metal–organic frameworks
,”
Chem. Soc. Rev.
41
,
5262
(
2012
).
8.
H.
Cheng
 et al., “
Hierarchically self-assembled supramolecular host-guest delivery system for drug resistant cancer therapy
,”
Biomacromolecules
19
,
1926
1938
(
2018
).
9.
L.
Zhao
,
J.
Cai
,
Y.
Li
,
J.
Wei
, and
C.
Duan
, “
A host–guest approach to combining enzymatic and artificial catalysis for catalyzing biomimetic monooxygenation
,”
Nat. Commun.
11
,
2903
(
2020
).
10.
S.
Horike
,
S.
Shimomura
, and
S.
Kitagawa
, “
Soft porous crystals
,”
Nat. Chem.
1
,
695
704
(
2009
).
11.
Y.
Fang
 et al., “
Catalytic reactions within the cavity of coordination cages
,”
Chem. Soc. Rev.
48
,
4707
4730
(
2019
).
12.
C.
Deraedt
and
D.
Astruc
, “
Supramolecular nanoreactors for catalysis
,”
Coord. Chem. Rev.
324
,
106
122
(
2016
).
13.
J.
Li
 et al., “
Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework
,”
Nat. Chem.
11
,
1085
1090
(
2019
).
14.
X.
Li
and
C.
Malardier-Jugroot
, “
Synthesis of polypyrrole under confinement in aqueous environment
,”
Mol. Simul.
37
,
694
700
(
2011
).
15.
X.
Li
and
C.
Malardier-Jugroot
, “
Confinement effect in the synthesis of polypyrrole within polymeric templates in aqueous environments
,”
Macromolecules
46
,
2258
2266
(
2013
).
16.
M.
McTaggart
,
M.
Jugroot
, and
C.
Malardier-Jugroot
, “
Biomimetic soft polymer nanomaterials for efficient chemical processes
,” in
Green Processes for Nanotechnology: From Inorganic to Bioinspired Nanomaterials
(
Springer
,
2015
).
17.
H.
Zhao
and
S. L.
Simon
, “
Synthesis of polymers in nanoreactors: A tool for manipulating polymer properties
,”
Polymer
211
,
123112
(
2020
).
18.
C.-G.
Wu
and
T.
Bein
, “
Conducting polyaniline filaments in a mesoporous channel host
,”
Science
264
,
1757
1759
(
1994
).
19.
M.
Tarnacka
 et al., “
Following kinetics and dynamics of DGEBA-aniline polymerization in nanoporous native alumina oxide membranes–FTIR and dielectric studies
,”
Polymer
68
,
253
261
(
2015
).
20.
B.
Sanz
,
N.
Ballard
,
Á.
Marcos-Fernández
,
J. M.
Asua
, and
C.
Mijangos
, “
Confinement effects in the step-growth polymerization within AAO templates and modeling
,”
Polymer
140
,
131
139
(
2018
).
21.
J. M.
Giussi
,
I.
Blaszczyk-Lezak
,
M. S.
Cortizo
, and
C.
Mijangos
, “
In-situ polymerization of styrene in AAO nanocavities
,”
Polymer
54
,
6886
6893
(
2013
).
22.
T.
Uemura
,
Y.
Kadowaki
,
N.
Yanai
, and
S.
Kitagawa
, “
Template synthesis of porous polypyrrole in 3D coordination nanochannels
,”
Chem. Mater.
21
,
4096
4098
(
2009
).
23.
T.
Uemura
 et al., “
Conformation and molecular dynamics of single polystyrene chain confined in coordination nanospace
,”
J. Am. Chem. Soc.
130
,
6781
6788
(
2008
).
24.
T.
Uemura
,
N.
Yanai
, and
S.
Kitagawa
, “
Polymerization reactions in porous coordination polymers
,”
Chem. Soc. Rev.
38
,
1228
1236
(
2009
).
25.
M.
Malvaldi
,
S.
Bruzzone
, and
F.
Picchioni
, “
Confinement effect in diffusion-controlled stepwise polymerization by Monte Carlo simulation
,”
J. Phys. Chem. B
110
,
12281
12288
(
2006
).
26.
P. G.
de Gennes
, “
Kinetics of diffusion-controlled processes in dense polymer systems. I. Nonentangled regimes
,”
J. Chem. Phys.
76
,
3316
3321
(
1982
).
27.
Y. P.
Koh
,
Q.
Li
, and
S. L.
Simon
, “
Tg and reactivity at the nanoscale
,”
Thermochim. Acta
492
,
45
50
(
2009
).
28.
I.
Teraoka
, “
Polymer solutions in confining geometries
,”
Prog. Polym. Sci.
21
,
89
149
(
1996
).
29.
M.
McTaggart
,
C.
Malardier-Jugroot
, and
M.
Jugroot
, “
Self-assembled biomimetic nanoreactors I: Polymeric template
,”
Chem. Phys. Lett.
636
,
216
220
(
2015
).
30.
J.
Villa
 et al., “
How important are entropic contributions to enzyme catalysis?
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
11899
11904
(
2000
).
31.
L.
Xie
,
M.
Yang
, and
Z.-N.
Chen
, “
Understanding the entropic effect in chorismate mutase reaction catalyzed by isochorismate-pyruvate lyase from: Pseudomonas aeruginosa (PchB)
,”
Catal. Sci. Technol.
9
,
957
965
(
2019
).
32.
J.
Åqvist
,
M.
Kazemi
,
G. V.
Isaksen
, and
B. O.
Brandsdal
, “
Entropy and enzyme catalysis
,”
Acc. Chem. Res.
50
,
199
207
(
2017
).
33.
J. P.
Richard
, “
Protein flexibility and stiffness enable efficient enzymatic catalysis
,”
J. Am. Chem. Soc.
141
,
3320
3331
(
2019
).
34.
M.
McTaggart
,
C.
Malardier-Jugroot
, and
M.
Jugroot
, “
Self-assembled biomimetic nanoreactors II: Noble metal active centers
,”
Chem. Phys. Lett.
636
,
221
227
(
2015
).
35.
M. N.
Groves
,
C.
Malardier-jugroot
, and
M.
Jugroot
, “
Environmentally friendly synthesis of supportless Pt based nanoreactors in aqueous solution
,”
Chem. Phys. Lett.
612
,
309
312
(
2014
).
36.
M.
Bée
,
Quasielastic Neutron Scattering
(
Adam Hilger
,
1988
).
37.
M.
Bée
, “
La diffusion quasiélastique des neutrons; introduction et principes généraux
,”
J. Phys. IV
10
,
Pr1-1
(
2000
).
38.
U.
Balucani
and
M.
Zoppi
,
Dynamics of the liquid state
(
Clarendon Press
,
1995
), Vol. 10.
39.
Y.
Tan
and
K.
Ghandi
, “
Kinetics and mechanism of pyrrole chemical polymerization
,”
Synth. Met.
175
,
183
191
(
2013
).
You do not currently have access to this content.