We demonstrate the applicability of the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method to the problem of computing ground states of one-dimensional chains of linear rotors with dipolar interactions. Specifically, we successfully obtain energies, entanglement entropies, and orientational correlations that are in agreement with the Density Matrix Renormalization Group (DMRG), which has been previously used for this system. We find that the entropies calculated by ML-MCTDH for larger system sizes contain nonmonotonicity, as expected in the vicinity of a second-order quantum phase transition between ordered and disordered rotor states. We observe that this effect remains when all couplings besides nearest-neighbor are omitted from the Hamiltonian, which suggests that it is not sensitive to the rate of decay of the interactions. In contrast to DMRG, which is tailored to the one-dimensional case, ML-MCTDH (as implemented in the Heidelberg MCTDH package) requires more computational time and memory, although the requirements are still within reach of commodity hardware. The numerical convergence and computational demand of two practical implementations of ML-MCTDH and DMRG are presented in detail for various combinations of system parameters.

1.
G. R.
Fleming
and
M. A.
Ratner
, “
Grand challenges in basic energy sciences
,”
Phys. Today
61
(
7
),
28
(
2008
).
2.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
, “
The multi-configurational time-dependent Hartree approach
,”
Chem. Phys. Lett.
165
,
73
78
(
1990
).
3.
U.
Manthe
,
H. D.
Meyer
, and
L. S.
Cederbaum
, “
Wave-packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl
,”
J. Chem. Phys.
97
,
3199
3213
(
1992
).
4.
M.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
, “
The multi-configuration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wave packets
,”
Phys. Rep.
324
,
1
105
(
2000
).
5.
H.-D.
Meyer
and
G. A.
Worth
, “
Quantum molecular dynamics: Propagating wavepackets and density operators using the multiconfiguration time-dependent Hartree (MCTDH) method
,”
Theor. Chem. Acc.
109
,
251
267
(
2003
).
6.
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
, edited by
H.-D.
Meyer
,
F.
Gatti
, and
G. A.
Worth
(
Wiley-VCH
,
Weinheim
,
2009
).
7.
A.
Raab
,
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
, “
Molecular dynamics of pyrazine after excitation to the S2 electronic state using a realistic 24-mode model Hamiltonian
,”
J. Chem. Phys.
110
,
936
946
(
1999
).
8.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
, “
Dynamics and infrared spectroscopy of the protonated water dimer
,”
Angew. Chem., Int. Ed.
46
,
6918
6921
(
2007
).
9.
O.
Vendrell
,
F.
Gatti
,
D.
Lauvergnat
, and
H.-D.
Meyer
, “
Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. I. Hamiltonian setup and analysis of the ground vibrational state
,”
J. Chem. Phys.
127
,
184302
(
2007
).
10.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
, “
Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics
,”
J. Chem. Phys.
127
,
184303
(
2007
).
11.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
, “
Strong isotope effects in the infrared spectrum of the Zundel cation
,”
Angew. Chem., Int. Ed.
48
,
352
355
(
2009
).
12.
O.
Vendrell
,
M.
Brill
,
F.
Gatti
,
D.
Lauvergnat
, and
H.-D.
Meyer
, “
Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero-point energy, vibrationally excited states and infrared spectrum
,”
J. Chem. Phys.
130
,
234305
(
2009
).
13.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
, “
Full dimensional (15 dimensional) quantum-dynamical simulation of the protonated water dimer IV: Isotope effects in the infrared spectra of D(D2O)2+, H(D2O)2+, and D(H2O)2+ isotopologues
,”
J. Chem. Phys.
131
,
034308
(
2009
).
14.
H.-D.
Meyer
,
F. L.
Quéré
,
C.
Léonard
, and
F.
Gatti
, “
Calculation and selective population of vibrational levels with the multiconfiguration time-dependent Hartree (MCTDH) algorithm
,”
Chem. Phys.
329
,
179
192
(
2006
).
15.
L. J.
Doriol
,
F.
Gatti
,
C.
Iung
, and
H.-D.
Meyer
, “
Computation of vibrational energy levels and eigenstates of fluoroform using the multiconfiguration time-dependent Hartree method
,”
J. Chem. Phys.
129
,
224109
(
2008
).
16.
H.
Wang
and
M.
Thoss
, “
Multilayer formulation of the multiconfiguration time-dependent Hartree theory
,”
J. Chem. Phys.
119
,
1289
1299
(
2003
).
17.
U.
Manthe
, “
A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces
,”
J. Chem. Phys.
128
,
164116
(
2008
).
18.
H.
Wang
and
M.
Thoss
, “
Numerically exact quantum dynamics for indistinguishable particles: The multilayer multiconfiguration time-dependent Hartree theory in second quantization representation
,”
J. Chem. Phys.
131
(
2
),
024114
(
2009
).
19.
O.
Vendrell
and
H.-D.
Meyer
, “
Multilayer multiconfiguration time-dependent Hartree method: Implementation and applications to a Henon–Heiles Hamiltonian and to pyrazine
,”
J. Chem. Phys.
134
,
044135
(
2011
).
20.
H.
Wang
, “
Multilayer multiconfiguration time-dependent Hartree theory
,”
J. Phys. Chem. A
119
,
7951
(
2015
).
21.
U.
Manthe
and
T.
Weike
, “
On the multi-layer multi-configuration time-dependent Hartree approach for bosons and fermions
,”
J. Chem. Phys.
146
,
064117
(
2017
).
22.
H.
Wang
,
D. E.
Skinner
, and
M.
Thoss
, “
Calculation of reactive flux correlation functions for systems in a condensed phase environment: A multilayer multi-configuration time-dependent Hartree approach
,”
J. Chem. Phys.
125
,
174502
(
2006
).
23.
H.
Wang
and
M.
Thoss
, “
Quantum-mechanical evaluation of the Boltzmann operator in correlation functions for large molecular systems: A multilayer multiconfiguration time-dependent Hartree approach
,”
J. Chem. Phys.
124
,
034114
(
2006
).
24.
H.
Wang
and
M.
Thoss
, “
Quantum dynamical simulation of electron-transfer reactions in an anharmonic environment
,”
J. Phys. Chem. A
111
,
10369
(
2007
).
25.
T.
Westermann
,
R.
Brodbeck
,
A. B.
Rozhenko
,
W.
Schoeller
, and
U.
Manthe
, “
Photodissociation of methyl iodide embedded in a host-guest complex: A full dimensional (189D) quantum dynamics study of CH3I@resorc[4]arene
,”
J. Chem. Phys.
135
,
184102
(
2011
).
26.
Q.
Meng
and
H.-D.
Meyer
, “
A multilayer MCTDH study on the full dimensional vibronic dynamics of naphthalene and anthracene cations
,”
J. Chem. Phys.
138
,
014313
(
2013
).
27.
J.
Schulze
,
M. F.
Shibl
,
M. J.
Al-Marri
, and
O.
Kühn
, “
Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) approach to the correlated exciton-vibrational dynamics in the FMO complex
,”
J. Chem. Phys.
144
,
185101
(
2016
).
28.
Y.
Xie
,
J.
Zheng
, and
Z.
Lan
, “
Full-dimensional multilayer multiconfigurational time-dependent Hartree study of electron transfer dynamics in the anthracene/C60 complex
,”
J. Chem. Phys.
142
,
084706
(
2015
).
29.
J.
Zheng
,
Y.
Xie
,
S.
Jiang
, and
Z.
Lan
, “
Ultrafast nonadiabatic dynamics of singlet fission: Quantum dynamics with the multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method
,”
J. Phys. Chem. C
120
,
1375
(
2016
).
30.
Q.
Meng
and
H.-D.
Meyer
, “
Lattice effects of surface cell: Multilayer multiconfiguration time-dependent Hartree study on surface scattering of CO/Cu(100)
,”
J. Chem. Phys.
146
,
184305
(
2017
).
31.
D.
Mendive-Tapia
,
T.
Firmino
,
H.-D.
Meyer
, and
F.
Gatti
, “
Towards a systematic convergence of multi-layer (ML) multi-configuration time-dependent Hartree nuclear wavefunctions: The ML-spawning algorithm
,”
Chem. Phys.
482
,
113
123
(
2017
).
32.
D.
Mendive-Tapia
,
E.
Mangaud
,
T.
Firmino
,
A.
de la Lande
,
M.
Desouter-Lecomte
,
H.-D.
Meyer
, and
F.
Gatti
, “
Multidimensional quantum mechanical modeling of electron transfer and electronic coherence in plant cryptochromes: The role of initial bath conditions
,”
J. Phys. Chem. B
122
,
126
136
(
2018
).
33.
H.
Wang
, “
Iterative calculation of energy eigenstates employing the multilayer multiconfiguration time-dependent Hartree theory
,”
J. Phys. Chem. A
118
,
9253
(
2014
).
34.
H.
Wang
and
J.
Shao
, “
Quantum phase transition in the spin-boson model: A multilayer multiconfiguration time-dependent Hartree study
,”
J. Phys. Chem. A
123
,
1882
(
2019
).
35.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
,
O.
Vendrell
, and
H.-D.
Meyer
, the MCTDH package, version 8.2, 2000, H.-D. Meyer, version 8.3, 2002, version 8.4, 2007, O. Vendrell and H.-D. Meyer, version 8.5, 2013, version 8.5 contains the ML-MCTDH algorithm, current versions: 8.4.20 and 8.5.13, 2020, see http://mctdh.uni-hd.de/ for a description of the Heidelberg MCTDH package.
36.
H. R.
Larsson
, “
Computing vibrational eigenstates with tree tensor network states (TTNS)
,”
J. Chem. Phys.
151
,
204102
(
2019
).
37.
S. R.
White
, “
Density matrix formulation for quantum renormalization groups
,”
Phys. Rev. Lett.
69
,
2863
(
1992
).
38.
U.
Schollwöck
, “
The density-matrix renormalization group
,”
Rev. Mod. Phys.
77
,
259
(
2005
).
39.
U.
Schollwöck
, “
The density-matrix renormalization group in the age of matrix product states
,”
Ann. Phys.
326
,
96
(
2011
).
40.
S. R.
White
and
R. L.
Martin
, “
Ab initio quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
110
(
9
),
4127
4130
(
1999
).
41.
G. K.-L.
Chan
and
S.
Sharma
, “
The density matrix renormalization group in quantum chemistry
,”
Annu. Rev. Phys. Chem.
62
,
465
481
(
2011
).
42.
C.
Duperrouzel
,
P.
Tecmer
,
K.
Boguslawski
,
G.
Barcza
,
Ö.
Legeza
, and
P. W.
Ayers
, “
A quantum informational approach for dissecting chemical reactions
,”
Chem. Phys. Lett.
621
,
160
164
(
2015
).
43.
A.
Baiardi
and
M.
Reiher
, “
The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges
,”
J. Chem. Phys.
152
,
040903
(
2020
).
44.
E. M.
Stoudenmire
and
S. R.
White
, “
Studying two-dimensional systems with the density matrix renormalization group
,”
Annu. Rev. Condens. Matter Phys.
3
,
111
128
(
2012
).
45.
J.
Haegeman
,
C.
Lubich
,
I.
Oseledets
,
B.
Vandereycken
, and
F.
Verstraete
, “
Unifying time evolution and optimization with matrix product states
,”
Phys. Rev. B
94
,
165116
(
2016
).
46.
Y.
Kurashige
, “
Matrix product state formulation of the multiconfiguration time-dependent Hartree theory
,”
J. Chem. Phys.
149
,
194114
(
2018
).
47.
S.
Paeckel
,
T.
Köhler
,
A.
Swoboda
,
S. R.
Manmana
,
U.
Schollwöck
, and
C.
Hubig
, “
Time-evolution methods for matrix-product states
,”
Ann. Phys.
411
,
167998
(
2019
).
48.
D.
Iouchtchenko
and
P.-N.
Roy
, “
Ground states of linear rotor chains via the density matrix renormalization group
,”
J. Chem. Phys.
148
,
134115
(
2018
).
49.
M.
Motta
,
D. M.
Ceperley
,
G.
Kin-Lic Chan
,
J. A.
Gomez
,
E.
Gull
,
S.
Guo
,
C. A.
Jiménez-Hoyos
,
T.
Nguyen Lan
,
J.
Li
,
F.
Ma
,
A. J.
Millis
,
N. V.
Prokofev
,
U.
Ray
,
G. E.
Scuseria
,
S.
Sorella
,
E. M.
Stoudenmire
,
Q.
Sun
,
I. S.
Tupitsyn
,
S. R.
White
,
D.
Zgid
, and
S.
Zhang
, “
Towards the solution of the many-electron problem in real materials: Equation of state of the hydrogen chain with state-of-the-art many-body methods
,”
Phys. Rev. X
7
,
031059
(
2017
).
50.
T.
Sahoo
,
D.
Iouchtchenko
,
C. M.
Herdman
, and
P.-N.
Roy
, “
A path integral ground state replica trick approach for the computation of entanglement entropy of dipolar linear rotors
,”
J. Chem. Phys.
152
,
184113
(
2020
).
51.
I. J. S.
De Vlugt
,
D.
Iouchtchenko
,
E.
Merali
,
P.-N.
Roy
, and
R. G.
Melko
, “
Reconstructing quantum molecular rotor ground states
,”
Phys. Rev. B
102
,
035108
(
2020
).
52.
M.
Fishman
,
S. R.
White
, and
E. M.
Stoudenmire
, “
The ITensor software library for tensor network calculations
,” arXiv:2007.14822 (
2020
).
53.
M. B.
Hastings
, “
An area law for one-dimensional quantum systems
,”
J. Stat. Mech.: Theory Exp.
2007
,
P08024
.
54.
D. E.
Parker
,
X.
Cao
, and
M. P.
Zaletel
, “
Local matrix product operators: Canonical form, compression, and control theory
,”
Phys. Rev. B
102
,
035147
(
2020
).
55.
G. K.-L.
Chan
,
A.
Keselman
,
N.
Nakatani
,
Z.
Li
, and
S. R.
White
, “
Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms
,”
J. Chem. Phys.
145
,
014102
(
2016
).
56.
N.
Nakatani
and
G. K.-L.
Chan
, “
Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm
,”
J. Chem. Phys.
138
,
134113
(
2013
).
57.
Z.
Li
, “
Expressibility of comb tensor network states (CTNS) for the P-cluster and the FeMo-cofactor of nitrogenase
,”
Electron. Struct.
3
,
014001
(
2021
).
58.
R.
Orús
, “
A practical introduction to tensor networks: Matrix product states and projected entangled pair states
,”
Ann. Phys.
349
,
117
(
2014
).
59.
V.
Murg
,
F.
Verstraete
,
Ö.
Legeza
, and
R. M.
Noack
, “
Simulating strongly correlated quantum systems with tree tensor networks
,”
Phys. Rev. B
82
,
205105
(
2010
).
60.
N.
Chepiga
and
S. R.
White
, “
Comb tensor networks
,”
Phys. Rev. B
99
,
235426
(
2019
).
61.
B. P.
Abolins
,
R. E.
Zillich
, and
K. B.
Whaley
, “
A ground state Monte Carlo approach for studies of dipolar systems with rotational degrees of freedom
,”
J. Low Temp. Phys.
165
,
249
260
(
2011
).
62.
S.
Sukiasyan
and
H.-D.
Meyer
, “
On the effect of initial rotation on reactivity. A multi-configuration time-dependent Hartree (MCTDH) wave-packet propagation study on the H + D2 and D + H2 reactive scattering systems
,”
J. Phys. Chem. A
105
,
2604
2611
(
2001
).

Supplementary Material

You do not currently have access to this content.