We investigate the validity of the classical approximation to the numerically exact quantum dynamics for infrared laser-driven control of isomerization processes. To this end, we simulate the fully quantum mechanical dynamics both by wavepacket propagation in position space and by propagating the Wigner function in phase space employing a quantum-mechanical correction term. A systematic comparison is made with purely classical propagation of the Wigner function. On the example of a one-dimensional double well potential, we identify two complementary classes of pulse sequences that invoke either a quantum mechanically or a classically dominated control mechanism. The quantum control relies on a sequence of excitations and de-excitations between the system’s eigenstates on a time scale far exceeding the characteristic vibrational oscillation periods. In contrast, the classical control mechanism is based on a short and strong few-cycle field exerting classical-like forces driving the wavepacket to the target potential well where it is slowed down and finally trapped. While in the first case, only the quantum mechanical propagation correctly describes the field-induced population transfer, the short pulse case is also amenable to a purely classical description. These findings shed light on the applicability of classical approximations to simulate laser-controlled dynamics and may offer a guideline for novel control experiments in more complex systems that can be analyzed and interpreted utilizing efficient state-of-the-art classical trajectory simulations based on ab initio molecular dynamics.

1.
D. J.
Tannor
and
S. A.
Rice
, “
Control of selectivity of chemical reaction via control of wave packet evolution
,”
J. Chem. Phys.
83
,
5013
(
1985
).
2.
M.
Shapiro
and
P.
Brumer
, “
Laser control of product quantum state populations in unimolecular reactions
,”
J. Chem. Phys.
84
,
4103
(
1986
).
3.
W.
Sibbett
,
A. A.
Lagatsky
, and
C. T. A.
Brown
, “
The development and application of femtosecond laser systems
,”
Opt. Express
20
,
6989
(
2012
).
4.
M. F.
Kling
and
M. J. J.
Vrakking
, “
Attosecond electron dynamics
,”
Annu. Rev. Phys. Chem.
59
,
463
(
2008
).
5.
F.
Krausz
and
M.
Ivanov
, “
Attosecond physics
,”
Rev. Mod. Phys.
81
,
163
(
2009
).
6.
J.
Köhler
,
M.
Wollenhaupt
,
T.
Bayer
,
C.
Sarpe
, and
T.
Baumert
, “
Zeptosecond precision pulse shaping
,”
Opt. Express
19
,
11638
(
2011
).
7.
T.
Brixner
and
G.
Gerber
, “
Quantum control of gas-phase and liquid-phase femtochemistry
,”
ChemPhysChem
4
,
418
438
(
2003
).
8.
M.
Dantus
and
V. V.
Lozovoy
, “
Experimental coherent laser control of physicochemical processes
,”
Chem. Rev.
104
,
1813
(
2004
).
9.
P.
Nuernberger
,
G.
Vogt
,
T.
Brixner
, and
G.
Gerber
, “
Femtosecond quantum control of molecular dynamics in the condensed phase
,”
Phys. Chem. Chem. Phys.
9
,
2470
2497
(
2007
).
10.
C.
Brif
,
R.
Chakrabarti
, and
H.
Rabitz
, “
Control of quantum phenomena: Past, present and future
,”
New J. Phys.
12
,
075008
(
2010
).
11.
D.
Keefer
and
R.
de Vivie-Riedle
, “
Pathways to new applications for quantum control
,”
Acc. Chem. Res.
51
,
2279
2286
(
2018
).
12.
R. S.
Judson
and
H.
Rabitz
, “
Teaching lasers to control molecules
,”
Phys. Rev. Lett.
68
,
1500
1503
(
1992
).
13.
R.
Mitrić
,
M.
Hartmann
,
J.
Pittner
, and
V.
Bonačić-Koutecký
, “
New strategy for optimal control of femtosecond pump-dump processes
,”
J. Phys. Chem. A
106
,
10477
(
2002
).
14.
R.
Mitrić
,
J.
Petersen
, and
V.
Bonačić-Koutecký
, “
Laser-field-induced surface-hopping method for the simulation and control of ultrafast photodynamics
,”
Phys. Rev. A
79
,
053416
(
2009
).
15.
J.
Petersen
and
R.
Mitrić
, “
Electronic coherence within the semiclassical field-induced surface hopping method: Strong field quantum control in K2
,”
Phys. Chem. Chem. Phys.
14
,
8299
(
2012
).
16.
J.
Petersen
,
R.
Mitrić
,
V.
Bonačić-Koutecký
,
J.-P.
Wolf
,
J.
Roslund
, and
H.
Rabitz
, “
How shaped light discriminates nearly identical biochromophores
,”
Phys. Rev. Lett.
105
,
073003
(
2010
).
17.
D. J.
Nesbitt
and
R. W.
Field
, “
Vibrational energy flow in highly excited molecules: Role of intramolecular vibrational redistribution
,”
J. Phys. Chem.
100
,
12735
(
1996
).
18.
N.
Bloembergen
and
A. H.
Zewail
, “
Energy redistribution in isolated molecules and the question of mode-selective laser chemistry revisited
,”
J. Phys. Chem.
88
,
5459
(
1984
).
19.
P.
Brumer
and
M.
Shapiro
, “
One photon mode selective control of reactions by rapid or shaped laser pulses: An emperor without clothes?
,”
Chem. Phys.
139
,
221
(
1989
).
20.
M.
Shapiro
and
P.
Brumer
, “
On the origin of pulse shaping control of molecular dynamics
,”
J. Phys. Chem. A
105
,
2897
(
2001
).
21.
D. G.
Abrashkevich
,
M.
Shapiro
, and
P.
Brumer
, “
Coherent control of the CH2Br + I ← CH2BrI → CH2I + Br branching photodissociation reaction
,”
J. Chem. Phys.
116
,
5584
(
2002
).
22.
A.
Assion
,
T.
Baumert
,
M.
Bergt
,
T.
Brixner
,
B.
Kiefer
,
V.
Seyfried
,
M.
Strehle
, and
G.
Gerber
, “
Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses
,”
Science
282
,
919
(
1998
).
23.
R. J.
Levis
,
G. M.
Menkir
, and
H.
Rabitz
, “
Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses
,”
Science
292
,
709
(
2001
).
24.
N. H.
Damrauer
,
C.
Dietl
,
G.
Krampert
,
S.-H.
Lee
,
K.-H.
Jung
, and
G.
Gerber
, “
Control of bond-selective photochemistry in CH2BrCl using adaptive femtosecond pulse shaping
,”
Eur. Phys. J. D
20
,
71
(
2002
).
25.
D. B.
Strasfeld
,
S.-H.
Shim
, and
M. T.
Zanni
, “
Controlling vibrational excitation with shaped mid-IR pulses
,”
Phys. Rev. Lett.
99
,
038102
(
2007
).
26.
L.
Windhorn
,
J. S.
Yeston
,
T.
Witte
,
W.
Fuß
,
M.
Motzkus
,
D.
Proch
,
K.-L.
Kompa
, and
C. B.
Moore
, “
Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale
,”
J. Chem. Phys.
119
,
641
(
2003
).
27.
V.
Botan
,
R.
Schanz
, and
P.
Hamm
, “
The infrared-driven cis–trans isomerization of HONO. II: Vibrational relaxation and slow isomerization channel
,”
J. Chem. Phys.
124
,
234511
234519
(
2006
).
28.
T.
Stensitzki
,
Y.
Yang
,
V.
Kozich
,
A. A.
Ahmed
,
F.
Kössl
,
O.
Kühn
, and
K.
Heyne
, “
Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation
,”
Nat. Chem.
10
,
126
(
2018
).
29.
J. E.
Combariza
,
B.
Just
,
J.
Manz
, and
G. K.
Paramonov
, “
Isomerizations controlled by ultrashort infrared laser pulses: Model simulations for the inversion of ligands (H) in the double-well potential of an organometallic compound, [(C5H5)(CO)2FePH2]
,”
J. Phys. Chem.
95
,
10351
10359
(
1991
).
30.
W.
Jakubetz
and
B. L.
Lan
, “
A simulation of ultrafast state-selective IR-laser-controlled isomerization of hydrogen cyanide based on global 3D ab initio potential and dipole surfaces
,”
Chem. Phys.
217
,
375
388
(
1997
).
31.
O.
Skocek
,
C.
Uiberacker
, and
W.
Jakubetz
, “
Dipole-resonance assisted isomerization in the electronic ground state using few-cycle infrared pulses
,”
J. Phys. Chem. A
115
,
7127
7133
(
2011
).
32.
N.
Došlić
,
O.
Kühn
, and
J.
Manz
, “
Infrared laser pulse controlled ultrafast h-atom switching in two-dimensional asymmetric double well potentials
,”
Ber. Bunsenges. Phys. Chem.
102
,
292
297
(
1998
).
33.
J. E.
Combariza
,
S.
Görtler
,
B.
Just
, and
J.
Manz
, “
Control of isomerizations by series of ultrafast infrared laser pulses. model simulations for semibullvalenes
,”
Chem. Phys. Lett.
195
,
393
399
(
1992
).
34.
N.
Došlić
,
O.
Kühn
,
J.
Manz
, and
K.
Sundermann
, “
The ‘hydrogen-subway’—A tunneling approach to intramolecular hydrogen transfer reactions controlled by ultrashort laser pulses
,”
J. Phys. Chem. A
102
,
9645
9650
(
1998
).
35.
M. V.
Korolkov
,
J.
Manz
, and
G. K.
Paramonov
, “
Theory of ultrafast laser control of isomerization reactions in an environment: Picosecond cope rearrangement of substituted semibullvalenes
,”
J. Chem. Phys.
105
,
10874
(
1996
).
36.
A.
Chenel
,
G.
Dive
,
C.
Meier
, and
M.
Desouter-Lecomte
, “
Control in a dissipative environment: The example of a cope rearrangement
,”
J. Phys. Chem. A
116
,
11273
11282
(
2012
).
37.
A.
Chenel
,
C.
Meier
,
G.
Dive
, and
M.
Desouter-Lecomte
, “
Optimal control of a cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode
,”
J. Chem. Phys.
142
,
024307
(
2015
).
38.
A.
Kondorskiy
and
H.
Nakamura
, “
Semiclassical guided optimal control of molecular processes of many degrees of freedom
,”
Phys. Rev. A
77
,
043407
(
2008
).
39.
S.
Gräfe
,
P.
Marquetand
, and
V.
Engel
, “
Classical aspects emerging from local control of energy and particle transfer in molecules
,”
J. Photochem. Photobiol., A
180
,
271
276
(
2006
).
40.
R.
Mitrić
and
V.
Bonačić-Koutecký
, “
Optimal control of mode-selective femtochemistry in multidimensional systems
,”
Phys. Rev. A
76
,
031405(R)
(
2007
).
41.
E.
Wigner
, “
On the quantum correction for thermodynamic equilibrium
,”
Phys. Rev.
40
,
749
(
1932
).
42.
D.
Kosloff
and
R.
Kosloff
, “
A fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics
,”
J. Comput. Phys.
52
,
35
(
1983
).
43.
D. E.
Goldberg
,
Genetic Algorithms in Search, Optimization, and Machine Learning
(
Addison-Wesley
,
Reading
,
1993
).
44.
E. J.
Heller
, “
Wigner phase space method: Analysis for semiclassical applications
,”
J. Chem. Phys.
65
,
1289
(
1976
).
45.
V.
Kozich
,
A.
Moguilevski
, and
K.
Heyne
, “
High energy femtosecond OPA pumped by 1030 nm Yb:KGW laser
,”
Opt. Commun.
285
,
4515
(
2012
).
46.
E. A.
Migal
,
F. V.
Potemkin
, and
V. M.
Gordienko
, “
Highly efficient optical parametric amplifier tunable from near- to mid-IR for driving extreme nonlinear optics in solids
,”
Opt. Lett.
42
,
5218
(
2017
).
47.
S.
Qu
,
G.
Chaudhary Nagar
,
W.
Li
,
K.
Liu
,
X.
Zou
,
S. H.
Luen
,
D.
Dempsey
,
K.-H.
Hong
,
Q. J.
Wang
,
Y.
Zhang
,
B.
Shim
, and
H.
Liang
, “
Long-wavelength-infrared laser filamentation in solids in the near-single cycle regime
,”
Opt. Lett.
45
,
2175
(
2020
).
48.
T. P.
Butler
,
D.
Gerz
,
C.
Hofer
,
J.
Xu
,
C.
Gaida
,
T.
Heuermann
,
M.
Gebhardt
,
L.
Vamos
,
W.
Schweinberger
,
J. A.
Gessner
,
T.
Siefke
,
M.
Heusinger
,
U.
Zeitner
,
A.
Apolonski
,
N.
Karpowicz
,
J.
Limpert
,
F.
Krausz
, and
I.
Pupeza
, “
Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region
,”
Opt. Lett.
44
,
1730
(
2019
).
49.
J. E.
Moyal
, “
Quantum mechanics as a statistical theory
,”
Proc. Cambridge Philos. Soc.
45
,
99
124
(
1949
).
You do not currently have access to this content.