Charged colloidal particles—on both the nano and micron scales—have been instrumental in enhancing our understanding of both atomic and colloidal crystals. These systems can be straightforwardly realized in the lab and tuned to self-assemble into body-centered-cubic (BCC) and face-centered-cubic (FCC) crystals. While these crystals will always exhibit a finite number of point defects, including vacancies and interstitials—which can dramatically impact their material properties—their existence is usually ignored in scientific studies. Here, we use computer simulations and free-energy calculations to characterize vacancies and interstitials in FCC and BCC crystals of point-Yukawa particles. We show that, in the BCC phase, defects are surprisingly more common than in the FCC phase, and the interstitials manifest as so-called crowdions: an exotic one-dimensional defect proposed to exist in atomic BCC crystals. Our results open the door to directly observe these elusive defects in the lab.

1.
S.
Alexander
,
P. M.
Chaikin
,
P.
Grant
,
G. J.
Morales
,
P.
Pincus
, and
D.
Hone
, “
Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory
,”
J. Chem. Phys.
80
,
5776
5781
(
1984
).
2.
K.
Kremer
,
M. O.
Robbins
, and
G. S.
Grest
, “
Phase diagram of Yukawa systems: Model for charge-stabilized colloids
,”
Phys. Rev. Lett.
57
,
2694
(
1986
).
3.
M. O.
Robbins
,
K.
Kremer
, and
G. S.
Grest
, “
Phase diagram and dynamics of Yukawa systems
,”
J. Chem. Phys.
88
,
3286
3312
(
1988
).
4.
Y.
Monovoukas
and
A. P.
Gast
, “
The experimental phase diagram of charged colloidal suspensions
,”
J. Colloid Interface Sci.
128
,
533
548
(
1989
).
5.
E. B.
Sirota
,
H. D.
Ou-Yang
,
S. K.
Sinha
,
P. M.
Chaikin
,
J. D.
Axe
, and
Y.
Fujii
, “
Complete phase diagram of a charged colloidal system: A synchrotron x-ray scattering study
,”
Phys. Rev. Lett.
62
,
1524
(
1989
).
6.
S.
Hamaguchi
,
R. T.
Farouki
, and
D. H. E.
Dubin
, “
Triple point of Yukawa systems
,”
Phys. Rev. E
56
,
4671
(
1997
).
7.
A.-P.
Hynninen
and
M.
Dijkstra
, “
Phase diagram of hard-core repulsive Yukawa particles with a density-dependent truncation: A simple model for charged colloids
,”
J. Phys.: Condens. Matter
15
,
S3557
(
2003
).
8.
A.
Yethiraj
and
A.
van Blaaderen
, “
A colloidal model system with an interaction tunable from hard sphere to soft and dipolar
,”
Nature
421
,
513
517
(
2003
).
9.
M. F.
Hsu
,
E. R.
Dufresne
, and
D. A.
Weitz
, “
Charge stabilization in nonpolar solvents
,”
Langmuir
21
,
4881
4887
(
2005
).
10.
C. P.
Royall
,
M. E.
Leunissen
,
A.-P.
Hynninen
,
M.
Dijkstra
, and
A.
van Blaaderen
, “
Re-entrant melting and freezing in a model system of charged colloids
,”
J. Chem. Phys.
124
,
244706
(
2006
).
11.
D.
El Masri
,
P.
van Oostrum
,
F.
Smallenburg
,
T.
Vissers
,
A.
Imhof
,
M.
Dijkstra
, and
A.
van Blaaderen
, “
Measuring colloidal forces from particle position deviations inside an optical trap
,”
Soft Matter
7
,
3462
3466
(
2011
).
12.
F.
Smallenburg
,
N.
Boon
,
M.
Kater
,
M.
Dijkstra
, and
R.
van Roij
, “
Phase diagrams of colloidal spheres with a constant zeta-potential
,”
J. Chem. Phys.
134
,
074505
(
2011
).
13.
T.
Kanai
,
N.
Boon
,
P. J.
Lu
,
E.
Sloutskin
,
A. B.
Schofield
,
F.
Smallenburg
,
R.
van Roij
,
M.
Dijkstra
, and
D. A.
Weitz
, “
Crystallization and reentrant melting of charged colloids in nonpolar solvents
,”
Phys. Rev. E
91
,
030301
(
2015
).
14.
S.
Arai
and
H.
Tanaka
, “
Surface-assisted single-crystal formation of charged colloids
,”
Nat. Phys.
13
,
503
509
(
2017
).
15.
M.
Chaudhuri
,
E.
Allahyarov
,
H.
Löwen
,
S. U.
Egelhaaf
, and
D. A.
Weitz
, “
Triple junction at the triple point resolved on the individual particle level
,”
Phys. Rev. Lett.
119
,
128001
(
2017
).
16.
K.
van Gruijthuijsen
,
M.
Obiols-Rabasa
,
M.
Heinen
,
G.
Nägele
, and
A.
Stradner
, “
Sterically stabilized colloids with tunable repulsions
,”
Langmuir
29
,
11199
11207
(
2013
).
17.
T. E.
Kodger
,
R. E.
Guerra
, and
J.
Sprakel
, “
Precise colloids with tunable interactions for confocal microscopy
,”
Sci. Rep.
5
,
14635
(
2015
).
18.
Q.
Yan
,
A.
Chen
,
S. J.
Chua
, and
X. S.
Zhao
, “
Incorporation of point defects into self-assembled three-dimensional colloidal crystals
,”
Adv. Mater.
17
,
2849
2853
(
2005
).
19.
R.
Rengarajan
,
D.
Mittleman
,
C.
Rich
, and
V.
Colvin
, “
Effect of disorder on the optical properties of colloidal crystals
,”
Phys. Rev. E
71
,
016615
(
2005
).
20.
E. C.
Nelson
,
N. L.
Dias
,
K. P.
Bassett
,
S. N.
Dunham
,
V.
Verma
,
M.
Miyake
,
P.
Wiltzius
,
J. A.
Rogers
,
J. J.
Coleman
,
X.
Li
 et al., “
Epitaxial growth of three-dimensionally architectured optoelectronic devices
,”
Nat. Mater.
10
,
676
681
(
2011
).
21.
C. H.
Bennett
and
B. J.
Alder
, “
Studies in molecular dynamics. IX. Vacancies in hard sphere crystals
,”
J. Chem. Phys.
54
,
4796
4808
(
1971
).
22.
S.
Pronk
and
D.
Frenkel
, “
Point defects in hard-sphere crystals
,”
J. Phys. Chem. B
105
,
6722
6727
(
2001
).
23.
S.
Pronk
and
D.
Frenkel
, “
Large effect of polydispersity on defect concentrations in colloidal crystals
,”
J. Chem. Phys.
120
,
6764
6768
(
2004
).
24.
N. Y. C.
Lin
,
M.
Bierbaum
,
P.
Schall
,
J. P.
Sethna
, and
I.
Cohen
, “
Measuring nonlinear stresses generated by defects in 3D colloidal crystals
,”
Nat. Mater.
15
,
1172
1176
(
2016
).
25.
B.
van der Meer
,
M.
Dijkstra
, and
L.
Filion
, “
Diffusion and interactions of point defects in hard-sphere crystals
,”
J. Chem. Phys.
146
,
244905
(
2017
).
26.
B.
VanSaders
,
J.
Dshemuchadse
, and
S. C.
Glotzer
, “
Strain fields in repulsive colloidal crystals
,”
Phys. Rev. Mater.
2
,
063604
(
2018
).
27.
C. H.
Bennett
and
B. J.
Alder
, “
Persistence of vacancy motion in hard sphere crystals
,”
J. Phys. Chem. Solids
32
,
2111
2122
(
1971
).
28.
J. P.
Hoogenboom
,
D.
Derks
,
P.
Vergeer
, and
A.
van Blaaderen
, “
Stacking faults in colloidal crystals grown by sedimentation
,”
J. Chem. Phys.
117
,
11320
11328
(
2002
).
29.
S.
Pronk
and
D.
Frenkel
, “
Can stacking faults in hard-sphere crystals anneal out spontaneously?
,”
J. Chem. Phys.
110
,
4589
4592
(
1999
).
30.
M.
Marechal
,
M.
Hermes
, and
M.
Dijkstra
, “
Stacking in sediments of colloidal hard spheres
,”
J. Chem. Phys.
135
,
034510
(
2011
).
31.
P. N.
Pusey
,
W.
Van Megen
,
P.
Bartlett
,
B. J.
Ackerson
,
J. G.
Rarity
, and
S. M.
Underwood
, “
Structure of crystals of hard colloidal spheres
,”
Phys. Rev. Lett.
63
,
2753
(
1989
).
32.
R.
van Damme
,
B.
van der Meer
,
J. J.
van den Broeke
,
F.
Smallenburg
, and
L.
Filion
, “
Phase and vacancy behaviour of hard “slanted” cubes
,”
J. Chem. Phys.
147
,
124501
(
2017
).
33.
B.
van der Meer
,
R.
Van Damme
,
M.
Dijkstra
,
F.
Smallenburg
, and
L.
Filion
, “
Revealing a vacancy analog of the crowdion interstitial in simple cubic crystals
,”
Phys. Rev. Lett.
121
,
258001
(
2018
).
34.
F.
Smallenburg
,
L.
Filion
,
M.
Marechal
, and
M.
Dijkstra
, “
Vacancy-stabilized crystalline order in hard cubes
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
17886
17890
(
2012
).
35.
H. R.
Paneth
, “
The mechanism of self-diffusion in alkali metals
,”
Phys. Rev.
80
,
708
(
1950
).
36.
P. M.
Derlet
,
D.
Nguyen-Manh
, and
S. L.
Dudarev
, “
Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals
,”
Phys. Rev. B
76
,
054107
(
2007
).
37.
D.
Nguyen-Manh
,
A. P.
Horsfield
, and
S. L.
Dudarev
, “
Self-interstitial atom defects in bcc transition metals: Group-specific trends
,”
Phys. Rev. B
73
,
020101
(
2006
).
38.
Y. N.
Osetsky
,
D. J.
Bacon
,
A.
Serra
,
B. N.
Singh
, and
S. I.
Golubov
, “
One-dimensional atomic transport by clusters of self-interstitial atoms in iron and copper
,”
Philos. Mag.
83
,
61
91
(
2003
).
39.
S.
Han
,
L. A.
Zepeda-Ruiz
,
G. J.
Ackland
,
R.
Car
, and
D. J.
Srolovitz
, “
Self-interstitials in V and Mo
,”
Phys. Rev. B
66
,
220101
(
2002
).
40.
L. A.
Zepeda-Ruiz
,
J.
Rottler
,
S.
Han
,
G. J.
Ackland
,
R.
Car
, and
D. J.
Srolovitz
, “
Strongly non-Arrhenius self-interstitial diffusion in vanadium
,”
Phys. Rev. B
70
,
060102
(
2004
).
41.
T.
Kontorova
and
J.
Frenkel
, “
On the theory of plastic deformation and twinning. II
,”
Z. Eksp. Teor. Fiz.
8
,
1340
1348
(
1938
).
42.
A. I.
Landau
,
A. S.
Kovalev
, and
A. D.
Kondratyuk
, “
Model of interacting atomic chains and its application to the description of the crowdion in an anisotropic crystal
,”
Phys. Status Solidi B
179
,
373
381
(
1993
).
43.
A. S.
Kovalev
,
A. D.
Kondratyuk
,
A. M.
Kosevich
, and
A. I.
Landau
, “
Theoretical description of the crowdion in an anisotropic crystal based on the Frenkel-Kontorova model including and elastic three-dimensional medium
,”
Phys. Status Solidi B
177
,
117
127
(
1993
).
44.
O. M.
Braun
and
Y. S.
Kivshar
, “
Nonlinear dynamics of the Frenkel–Kontorova model
,”
Phys. Rep.
306
,
1
108
(
1998
).
45.
S.
Dudarev
, “
Coherent motion of interstitial defects in a crystalline material
,”
Philos. Mag.
83
,
3577
3597
(
2003
).
46.
S. P.
Fitzgerald
and
D.
Nguyen-Manh
, “
Peierls potential for crowdions in the bcc transition metals
,”
Phys. Rev. Lett.
101
,
115504
(
2008
).
47.
A.
Ivlev
,
G.
Morfill
,
H.
Lowen
, and
C. P.
Royall
,
Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids
(
World Scientific Publishing Company
,
2012
), Vol. 5.
48.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
), Vol. 1.
49.
D.
Frenkel
and
A. J. C.
Ladd
, “
New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres
,”
J. Chem. Phys.
81
,
3188
3193
(
1984
).
50.

Note that we have taken the phase boundaries from Ref. 6 and have ensured that the crystal phases do not melt in our simulations.

51.
B.
van der Meer
,
F.
Smallenburg
,
M.
Dijkstra
, and
L.
Filion
, “
High antisite defect concentrations in hard-sphere colloidal laves phases
,”
Soft Matter
16
,
4155
(
2020
).
52.
J.
Tauber
,
R.
Higler
, and
J.
Sprakel
, “
Anomalous dynamics of interstitial dopants in soft crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
13660
13665
(
2016
).
You do not currently have access to this content.