The Kauzmann temperature (TK) of a supercooled liquid is defined as the temperature at which the liquid entropy becomes equal to that of the crystal. The excess entropy, the difference between liquid and crystal entropies, is routinely used as a measure of the configurational entropy, whose vanishing signals the thermodynamic glass transition. The existence of the thermodynamic glass transition is a widely studied subject, and of particular recent interest is the role of dimensionality in determining the presence of a glass transition at a finite temperature. The glass transition in water has been investigated intensely and is challenging as the experimental glass transition appears to occur at a temperature where the metastable liquid is strongly prone to crystallization and is not stable. To understand the dimensionality dependence of the Kauzmann temperature in water, we study computationally bulk water (three-dimensions), water confined in the slit pore of the graphene sheet (two-dimensions), and water confined in the pore of the carbon nanotube of chirality (11,11) having a diameter of 14.9 Å (one-dimension), which is the lowest diameter where amorphous water does not always crystallize into nanotube ice in the supercooled region. Using molecular dynamics simulations, we compute the entropy of water in bulk and under reduced dimensional nanoscale confinement to investigate the variation of the Kauzmann temperature with dimension. We obtain a value of TK (133 K) for bulk water in good agreement with experiments [136 K (C. A. Angell, Science 319, 582–587 (2008) and K. Amann-Winkel et al., Proc. Natl. Acad. Sci. U. S. A. 110, 17720–17725 (2013)]. However, for confined water, in two-dimensions and one-dimension, we find that there is no finite temperature Kauzmann point (in other words, the Kauzmann temperature is 0 K). Analysis of the fluidicity factor, a measure of anharmonicity in the oscillation of normal modes, reveals that the Kauzmann temperature can also be computed from the difference in the fluidicity factor between amorphous and ice phases.

1.
J. S.
Langer
, “
Theories of glass formation and the glass transition
,”
Rep. Prog. Phys.
77
,
042501
(
2014
).
2.
M. D.
Ediger
and
P.
Harrowell
, “
Perspective: Supercooled liquids and glasses
,”
J. Chem. Phys.
137
,
080901
(
2012
).
3.
A.
Cavagna
, “
Supercooled liquids for pedestrians
,”
Phys. Rep.
476
,
51
124
(
2009
).
4.
J. C.
Dyre
, “
Colloquium: The glass transition and elastic models of glass-forming liquids
,”
Rev. Mod. Phys.
78
,
953
(
2006
).
5.
P. G.
Debenedetti
and
F. H.
Stillinger
, “
Supercooled liquids and the glass transition
,”
Nature
410
,
259
267
(
2001
).
6.
E. B.
Moore
and
V.
Molinero
, “
Ice crystallization in water’s ‘no-man’s land’
,”
J. Chem. Phys.
132
(
24
),
244504
(
2010
).
7.
S.
Sastry
, “
Liquid limits: Glass transition and liquid-gas spinodal boundaries of metastable liquids
,”
Phys. Rev. Lett.
85
(
3
),
590
(
2000
).
8.
A.
Manka
,
H.
Pathak
,
S.
Tanimura
,
J.
Wölk
,
R.
Strey
, and
B. E.
Wyslouzil
, “
Freezing water in no-man’s land
,”
Phys. Chem. Chem. Phys.
14
(
13
),
4505
4516
(
2012
).
9.
F.
Smallenburg
,
L.
Filion
, and
F.
Sciortino
, “
Erasing no-man’s land by thermodynamically stabilizing the liquid–liquid transition in tetrahedral particles
,”
Nat. Phys.
10
(
9
),
653
657
(
2014
).
10.
O.
Mishima
and
H. E.
Stanley
, “
The relationship between liquid, supercooled and glassy water
,”
Nature
396
(
6709
),
329
335
(
1998
).
11.
W.
Kauzmann
, “
The nature of the glassy state and the behavior of liquids at low temperatures
,”
Chem. Rev.
43
,
219
256
(
1948
).
12.
C. A.
Angell
, “
Insights into phases of liquid water from study of its unusual glass-forming properties
,”
Science
319
,
582
587
(
2008
).
13.
K.
Ito
,
C. T.
Moynihan
, and
C. A.
Angell
, “
Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water
,”
Nature
398
(
6727
),
492
495
(
1999
).
14.
V.
Velikov
,
S.
Borick
, and
C. A.
Angell
, “
The glass transition of water, based on hyperquenching experiments
,”
Science
294
(
5550
),
2335
2338
(
2001
).
15.
Y.
Yue
and
C. A.
Angell
, “
Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses
,”
Nature
427
(
6976
),
717
720
(
2004
).
16.
A.
Hallbrucker
,
E.
Mayer
, and
G. P.
Johari
, “
Glass-liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous solid water: A comparison with hyperquenched glassy water
,”
J. Phys. Chem.
93
,
4986
4990
(
1989
).
17.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
, “
The glass–liquid transition of hyperquenched water
,”
Nature
330
,
552
553
(
1987
).
18.
A.
Scala
,
F. W.
Starr
,
E.
La Nave
,
F.
Sciortino
, and
H. E.
Stanley
, “
Configurational entropy and diffusivity of supercooled water
,”
Nature
406
(
6792
),
166
169
(
2000
).
19.
A.
Faraone
,
L.
Liu
,
C.-Y.
Mou
,
C.-W.
Yen
, and
S.-H.
Chen
, “
Fragile-to-strong liquid transition in deeply supercooled confined water
,”
J. Chem. Phys.
121
(
22
),
10843
10846
(
2004
).
20.
M. K.
Rajasekaran
and
K. G.
Ayappa
, “
Dynamical transitions of supercooled water in graphene oxide nanopores: Influence of surface hydrophilicity
,”
J. Phys. Chem. B
124
,
4805
(
2020
).
21.
M.
Rajasekaran
and
K. G.
Ayappa
, “
Influence of surface hydrophilicity and hydration on the rotational relaxation of supercooled water on graphene oxide surfaces
,”
Phys. Chem. Chem. Phys.
22
(
28
),
16080
16095
(
2020
).
22.
S.
Saito
,
B.
Bagchi
, and
I.
Ohmine
, “
Crucial role of fragmented and isolated defects in persistent relaxation of deeply supercooled water
,”
J. Chem. Phys.
149
,
124504
(
2018
).
23.
K. V.
Agrawal
,
S.
Shimizu
,
L. W.
Drahushuk
,
D.
Kilcoyne
, and
M. S.
Strano
, “
Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes
,”
Nat. Nanotechnol.
12
,
267
(
2017
).
24.
H.
Kumar
,
C.
Dasgupta
, and
P. K.
Maiti
, “
Phase transition in monolayer water confined in janus nanopore
,”
Langmuir
34
,
12199
12205
(
2018
).
25.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
26.
P. G.
Debenedetti
,
F.
Sciortino
, and
G. H.
Zerze
, “
Second critical point in two realistic models of water
,”
Science
369
(
6501
),
289
292
(
2020
).
27.
S.
Saito
and
B.
Bagchi
, “
Thermodynamic picture of vitrification of water through complex specific heat and entropy: A journey through ‘no man’s land’
,”
J. Chem. Phys.
150
,
054502
(
2019
).
28.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
29.
H. L.
Pi
 et al., “
Anomalies in water as obtained from computer simulations of the TIP4P/2005 model: Density maxima, and density, isothermal compressibility and heat capacity minima
,”
Mol. Phys.
107
,
365
374
(
2009
).
30.
A.
Saul
and
W.
Wagner
, “
A fundamental equation for water covering the range from the melting line to 1273 K at pressures up to 25 000 MPa
,”
J. Phys. Chem. Ref. Data
18
,
1537
1564
(
1989
).
31.
O.
Byl
 et al., “
Unusual hydrogen bonding in water-filled carbon nanotubes
,”
J. Am. Chem. Soc.
128
,
12090
12097
(
2006
).
32.
J.
Bai
,
J.
Wang
, and
X. C.
Zeng
, “
Multiwalled ice helixes and ice nanotubes
,”
Proc. Natl. Acad. Sci. U. S. A.
103
(
52
),
19664
19667
(
2006
).
33.
G.
Reiter
,
J. C.
Li
,
J.
Mayers
,
T.
Abdul-Redah
, and
P.
Platzman
, “
The proton momentum distribution in water and ice
,”
Braz. J. Phys.
34
,
142
147
(
2004
).
34.
K.
Koga
,
G. T.
Gao
,
H.
Tanaka
, and
X. C.
Zeng
, “
Formation of ordered ice nanotubes inside carbon nanotubes
,”
Nature
412
,
802
(
2001
).
35.
B.
Mukherjee
,
P. K.
Maiti
,
C.
Dasgupta
, and
A. K.
Sood
, “
Strong correlations and Fickian water diffusion in narrow carbon nanotubes
,”
J. Chem. Phys.
126
(
12
),
124704
(
2007
).
36.
B.
Mukherjee
,
P. K.
Maiti
,
C.
Dasgupta
, and
A. K.
Sood
, “
Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings
,”
ACS Nano
2
(
6
),
1189
1196
(
2008
).
37.
M.
Moid
,
Y.
Finkelstein
,
R.
Moreh
, and
P. K.
Maiti
, “
Microscopic study of proton kinetic energy anomaly for nanoconfined water
,”
J. Phys. Chem. B
124
,
190
198
(
2019
).
38.
G.
Algara-Siller
 et al., “
Square ice in graphene nanocapillaries
,”
Nature
519
,
443
445
(
2015
).
39.
M. S. F.
Mario
,
M.
Neek-Amal
, and
F.
Peeters
, “
AA-stacked bilayer square ice between graphene layers
,”
Phys. Rev. B
92
,
245428
(
2015
).
40.
T. A.
Pascal
,
C. P.
Schwartz
,
K. V.
Lawler
, and
D.
Prendergast
, “
The purported square ice in bilayer graphene is a nanoscale, monolayer object
,”
J. Chem. Phys.
150
,
231101
(
2019
).
41.
R.
Srivastava
,
H.
Docherty
,
J. K.
Singh
, and
P. T.
Cummings
, “
Phase transitions of water in graphite and mica pores
,”
J. Phys. Chem. C
115
(
25
),
12448
12457
(
2011
).
42.
N.
Raghav
,
S.
Chakraborty
, and
P. K.
Maiti
, “
Molecular mechanism of water permeation in a helium impermeable graphene and graphene oxide membrane
,”
Phys. Chem. Chem. Phys.
17
,
20557
20562
(
2015
).
43.
S.
Chakraborty
,
H.
Kumar
,
C.
Dasgupta
, and
P. K.
Maiti
, “
Confined water: Structure, dynamics, and thermodynamics
,”
Acc. Chem. Res.
50
,
2139
2146
(
2017
).
44.
S.-T.
Lin
,
M.
Blanco
, and
W. A.
Goddard
 III
, “
The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids
,”
J. Chem. Phys.
119
,
11792
11805
(
2003
).
45.
R. K.
Pathria
and
P. D
Beale
,
Statistical Mechanics
(
Academic Press
,
2011
).
46.
N. F.
Carnahan
and
K. E.
Starling
, “
Thermodynamic properties of a rigid-sphere fluid
,”
J. Chem. Phys.
53
,
600
603
(
1970
).
47.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper & Row
,
1975
).
48.
H. A.
Eyring
,
Comparison of the Ionization by and Stopping Power for Alpha Particles of Elements and Compounds
(
University of California
,
1927
).
49.
M. A.
González
and
J. L. F.
Abascal
, “
A flexible model for water based on TIP4P/2005
,”
J. Chem. Phys.
135
,
224516
(
2011
).
50.
J.-B.
Brubach
,
A.
Mermet
,
A.
Filabozzi
,
A.
Gerschel
, and
P.
Roy
, “
Signatures of the hydrogen bonding in the infrared bands of water
,”
J. Chem. Phys.
122
,
184509
(
2005
).
51.
T. A.
Pascal
,
D.
Schärf
,
Y.
Jung
, and
T. D.
Kühne
, “
On the absolute thermodynamics of from computer simulations: A comparison of first-principles molecular dynamics, reactive and empirical force fields
,”
J. Chem. Phys.
137
,
244507
(
2012
).
52.
K.
Amann-Winkel
 et al., “
Water’s second glass transition
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
17720
17725
(
2013
).
53.
Y. P.
Handa
and
D. D.
Klug
, “
Heat capacity and glass transition behavior of amorphous ice
,”
J. Phys. Chem.
92
,
3323
3325
(
1988
).
54.
Y.
Finkelstein
and
R.
Moreh
, “
Proton dynamics in ice VII at high pressures
,”
J. Chem. Phys.
139
,
044716
(
2013
).
55.
H.
Pathak
 et al., “
Intermediate range O–O correlations in supercooled water down to 235 K
,”
J. Chem. Phys.
150
,
224506
(
2019
).
56.
K. T.
Wikfeldt
,
A.
Nilsson
, and
L. G. M.
Pettersson
, “
Spatially inhomogeneous bimodal inherent structure of simulated liquid water
,”
Phys. Chem. Chem. Phys.
13
,
19918
19924
(
2011
).
57.
S. K.
Reddy
,
D. R.
Moberg
,
S. C.
Straight
, and
F.
Paesani
, “
Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function
,”
J. Chem. Phys.
147
,
244504
(
2017
).
58.
E. A.
Raymond
,
T. L.
Tarbuck
, and
G. L.
Richmond
, “
Isotopic dilution studies of the vapor/water interface as investigated by vibrational sum-frequency spectroscopy
,”
J. Phys. Chem. B
106
,
2817
2820
(
2002
).
59.
Y.
Liu
,
Q.
Wang
,
T.
Wu
, and
L.
Zhang
, “
Fluid structure and transport properties of water inside carbon nanotubes
,”
J. Chem. Phys.
123
,
234701
(
2005
).
60.
L.
Berthier
,
P.
Charbonneau
,
A.
Ninarello
,
M.
Ozawa
, and
S.
Yaida
, “
Zero-temperature glass transition in two dimensions
,”
Nat. Commun.
10
,
1508
(
2019
).
61.
L.
Berthier
,
M.
Ozawa
, and
C.
Scalliet
, “
Configurational entropy of glass-forming liquids
,”
J. Chem. Phys.
150
,
160902
(
2019
).
62.
S.-T.
Lin
,
P. K.
Maiti
, and
W. A.
Goddard
 III
, “
Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations
,”
J. Phys. Chem. B
114
(
24
),
8191
8198
(
2010
).

Supplementary Material

You do not currently have access to this content.