Referring to a recent experiment, we theoretically study the process of a two-channel decay of the diatomic silver anion (Ag2), namely, the spontaneous electron ejection giving Ag2 + e and the dissociation leading to Ag + Ag. The ground state potential energy curves of the silver molecules of diatomic neutral and negative ions were calculated using proper pseudo-potentials and atomic basis sets. We also estimated the non-adiabatic electronic coupling between the ground state of Ag2 and the ground state of Ag2 + e, which, in turn, allowed us to estimate the minimal and mean values of the electron autodetachment lifetimes. The relative energies of the rovibrational levels allow the description of the spontaneous electron emission process, while the description of the rotational dissociation is treated with the quantum dynamics method as well as time-independent methods. The results of our calculations are verified by comparison with the experimental data.

1.
B.
Sutcliffe
, “
Treating nuclei in molecules with quantum mechanical respect
,”
Theor. Chem. Acc.
140
,
23
(
2021
).
2.
K.
Pachucki
and
J.
Komasa
, “
Schrödinger equation solved for the hydrogen molecule with unprecedented accuracy
,”
J. Chem. Phys.
144
,
164306
(
2016
).
3.
M.
Puchalski
,
A.
Spyszkiewicz
,
J.
Komasa
, and
K.
Pachucki
, “
Nonadiabatic relativistic correction to the dissociation energy of H2, D2, and HD
,”
Phys. Rev. Lett.
121
,
073001
(
2018
).
4.
M.
Puchalski
,
J.
Komasa
,
P.
Czachorowski
, and
K.
Pachucki
, “
Nonadiabatic QED correction to the dissociation energy of the hydrogen molecule
,”
Phys. Rev. Lett.
122
,
103003
(
2019
).
5.
C. E.
Scheu
,
D. B.
Kinghorn
, and
L.
Adamowicz
, “
Non-Born–Oppenheimer calculations on the LiH molecule with explicitly correlated Gaussian functions
,”
J. Chem. Phys.
114
,
3393
3397
(
2001
).
6.
S.
Bubin
,
M.
Stanke
, and
L.
Adamowicz
, “
Non-Born–Oppenheimer calculations of the BH molecule
,”
J. Chem. Phys.
131
,
044128
(
2009
).
7.
F.
Pavosevic
,
T.
Culpitt
, and
S.
Hammes-Schiffer
, “
Multicomponent quantum chemistry: Integrating electronic and nuclear quantum effects via the nuclear–electronic orbital method
,”
Chem. Rev.
120
,
4222
4253
(
2020
).
8.
J. R.
Reimers
,
L. K.
McKemmish
,
R. H.
McKenzie
, and
N. S.
Hush
, “
Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: The general importance of all three Born–Oppenheimer breakdown corrections
,”
Phys. Chem. Chem. Phys.
17
,
24641
24665
(
2015
).
9.
M. F.
Kling
and
M. J. J.
Vrakking
, “
Attosecond electron dynamics
,”
Annu. Rev. Phys. Chem.
59
,
463
492
(
2008
).
10.
P. B.
Corkum
and
F.
Krausz
, “
Attosecond science
,”
Nat. Phys.
3
,
381
387
(
2007
).
11.
K.
Hansen
,
M. H.
Stockett
,
M.
Kaminska
,
R. F.
Nascimento
,
E. K.
Anderson
,
M.
Gatchell
,
K. C.
Chartkunchand
,
G.
Eklund
,
H.
Zettergren
,
H. T.
Schmidt
, and
H.
Cederquist
, “
Spontaneous decay of small copper-cluster anions cun (n = 3–6), on long time scales
,”
Phys. Rev. A
95
,
022511
(
2017
).
12.
E. K.
Anderson
,
M.
Kaminska
,
K. C.
Chartkunchand
,
G.
Eklund
,
M.
Gatchell
,
K.
Hansen
,
H.
Zettergren
,
H.
Cederquist
, and
H. T.
Schmidt
, “
Decays of excited silver-cluster anions Agn; n = 4 to 7, in the double electrostatic ion ring experiment
,”
Phys. Rev. A
98
,
022705
(
2018
).
13.
E. K.
Anderson
,
A. F.
Schmidt-May
,
P. K.
Najeeb
,
G.
Eklund
,
K. C.
Chartkunchand
,
S.
Rosen
,
A.
Larson
,
K.
Hansen
,
H.
Cederquist
,
H.
Zettergren
, and
H. T.
Schmidt
, “
Spontaneous electron emission from hot silver dimer anions: Breakdown of the Born-Oppenheimer approximation
,”
Phys. Rev. Lett.
124
,
173001
(
2020
).
14.
M.
Wiatr
,
P.
Jasik
, and
J. E.
Sienkiewicz
,
Phys. Scr.
90
,
054012
(
2015
).
15.
M.
Wiatr
,
P.
Jasik
,
T.
Kilich
,
J. E.
Sienkiewicz
, and
H.
Stoll
,
Chem. Phys.
500
,
80
(
2018
).
16.
D.
Figgen
,
G.
Rauhut
,
M.
Dolg
, and
H.
Stoll
,
Chem. Phys.
311
,
227
(
2005
).
17.
K. A.
Peterson
and
C.
Puzzarini
,
Theor. Chem. Acc.
114
,
283
(
2005
).
18.
R. C.
Bilodeau
,
M.
Scheer
, and
H. K.
Haugen
, “
Infrared laser photodetachment of transition metal negative ions: Studies on Cr, Mo, Cu and Ag
,”
J. Phys. B: At., Mol. Opt. Phys.
31
,
3885
3891
(
1998
).
19.
G. A.
Petersson
,
S.
Zhong
,
J. A.
Montgomery
, and
M. J.
Frisch
, “
On the optimization of Gaussian basis sets
,”
J. Chem. Phys.
118
,
1101
1109
(
2003
).
20.
R. R.
Laher
,
M. A.
Khakoo
,
M.
Kuzmanović
,
V.
Bojović
, and
A.
Antic-Jovanović
,
J. Quant. Spectrosc. Radiat. Transfer
112
,
786
(
2011
).
21.
J.
Ho
,
K. M.
Ervin
, and
W. C.
Lineberger
,
J. Chem. Phys.
93
,
6987
(
1990
).
22.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
W.
Györffy
,
D.
Kats
,
T.
Korona
,
R. L. A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
Y.
Liu
,
A. W.
Lloyd
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
, and
M.
Wang
, molpro, version 2012.1 and a package of ab initio programs,
2012
, see http://www.molpro.net.
23.
P.
Jasik
, “
sPYtroscopy - the computer program written in Python for computing rovibrational spectra of diatomic molecules including an arbitrary number and types of couplings between electronic states
” (unpublished).
24.
N.
Douguet
,
S.
Fonseca dos Santos
,
M.
Raoult
,
O.
Dulieu
,
A. E.
Orel
, and
V.
Kokoouline
, “
Theoretical study of radiative electron attachment to CN, C2H, and C4H radicals
,”
J. Chem. Phys.
142
,
234309
(
2015
).
25.
F. A.
Gianturco
and
A.
Jain
,
Phys. Rep.
143
,
347
425
(
1986
).
26.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
27.
F. A.
Gianturco
and
S.
Scialla
,
J. Phys. B: At. Mol. Phys.
20
,
3171
(
1987
).
28.
M.
Silkowski
and
K.
Pachucki
, “
Long-range asymptotics of exchange energy in the hydrogen molecule
,”
J. Chem. Phys.
152
,
174308
(
2020
).
29.
N.
Sanna
,
G.
Morelli
,
S.
Orlandini
,
M.
Tacconi
, and
I.
Baccarelli
,
Comput. Phys. Commun.
248
,
106970
(
2020
).
30.
M. J.
Frisch
 et al, Gaussian 09, Revision A.02,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
31.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
32.
P. J.
Hay
and
W. R.
Wadt
, “
Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals
,”
J. Chem. Phys.
82
,
299
310
(
1985
).
33.
P. J.
Hay
and
W. R.
Wadt
, “
Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg
,”
J. Chem. Phys.
82
,
270
283
(
1985
).
34.
T. H.
Dunning
, Jr.
and
P. J.
Hay
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
 III
(
Plenum
,
New York
,
1977
), Vol. 3, pp.
1
28
.
35.
J.
Franz
, “
Bumblebee - the computer program package for electron-molecule scattering
” (unpublished).
36.
E. B.
Stechel
,
R. B.
Walker
, and
J. C.
Light
,
J. Chem. Phys.
69
,
3518
(
1978
).
37.
F.
Calogero
,
Variable Phase Approach to Potential Scattering
(
Academic Press
,
New York
,
1967
).
38.
J. R.
Dormand
and
P. J.
Prince
,
J. Comput. Appl. Math.
6
,
19
26
(
1980
).
39.
K. C.
Kulander
and
J. C.
Light
,
J. Chem. Phys.
73
,
4337
(
1980
).
40.
J.
Franz
,
M.
Gustafsson
, and
G.
Nyman
, “
Long-range asymptotics of exchange energy in the hydrogen molecule
,”
Mon. Not. R. Astron. Soc.
414
,
3547
3550
(
2011
).
41.
M.
Galassi
 et al,
GNU Scientific Library Reference Manual
, 3rd ed. (
2020
), ISBN: 0954612078; GSL–version 2.6, https://www.gnu.org/software/gsl/.
42.
H.
Akima
,
J. Assoc. Comput. Mach.
17
,
589
602
(
1970
).
43.
C. W.
Ueberhuber
,
Numerical Computation
(
Springer Verlag
,
Berlin
,
1997
), Vol. 1.
44.
P.
Jasik
,
J. E.
Sienkiewicz
,
J.
Domsta
, and
N. E.
Henriksen
,
Phys. Chem. Chem. Phys.
19
,
19777
(
2017
).
45.
P.
Jasik
,
J.
Kozicki
,
T.
Kilich
,
J. E.
Sienkiewicz
, and
N. E.
Henriksen
,
Phys. Chem. Chem. Phys.
20
,
18663
(
2018
).
46.
D. J.
Tannor
,
Introduction to Quantum Mechanics: A Time-Dependent Perspective
(
University Science Books
,
Sausalito
,
2007
).
47.
R.
Schinke
,
Photodissociation Dynamics
(
Cambridge University Press
,
Cambridge
,
1993
).
48.
P.
Bilingsley
,
Probability and Measure
(
John Wiley & Sons
,
New York; Chichester; Brisbane; Toronto; Singapore
,
1995
).
49.
M.
Frigo
and
S. G.
Johnson
, “
The design and implementation of FFTW3
,”
Proc. IEEE
93
,
216
231
(
2005
), part of Special Issue: Program Generation, Optimization, and Platform Adaptation.
50.
V.
Šmilauer
 et al, Using and programming, Yade Documentation, 2nd ed., The Yade Project,
2015
, http://yade-dem.org/doc/.
51.
J.
Kozicki
and
F. V.
Donzé
, “
A new open–source software developed for numerical simulations using discrete modeling methods
,”
Comput. Methods Appl. Mech. Eng.
197
,
4429
4443
(
2008
).
52.
J.
Kozicki
and
F. V.
Donzé
, “
YADE–OPEN DEM: An open–source software using a discrete element method to simulate granular material
,”
Eng. Comput.
26
,
786
805
(
2009
).
53.
The Yade Project, Yade Publications,
2020
, https://www.yade-dem.org/doc/publications.html.
54.
M. D.
Morse
,
Chem. Rev.
86
,
1049
(
1986
).
55.
P. J.
Hay
and
R. L.
Martin
,
J. Chem. Phys.
83
,
5174
(
1985
).
56.
H.
Zhang
and
K.
Balasubramanian
,
J. Chem. Phys.
98
,
7082
(
1993
).
57.
H.
Stoll
,
P.
Fuentealba
,
P.
Schwerdtfeger
,
J.
Flad
,
L. v.
Szentpály
, and
H.
Preuss
, “
Cu and Ag as one-valence-electron atoms: CI results and quadrupole corrections for Cu2, Ag2, CuH, and AgH
,”
J. Chem. Phys.
81
,
2732
2736
(
1984
).
58.
V.
Bonacic-Koutecky
,
L.
Cespiva
,
P.
Fantucci
,
J.
Pittner
, and
J.
Koutecky
,
J. Chem. Phys.
100
,
490
(
1994
).
59.
V. A.
Spasov
,
T. H.
Lee
,
J. P.
Maberry
, and
K. M.
Ervin
,
J. Chem. Phys.
110
,
5208
(
1999
).
60.
R. J. L.
Roy
, “
LEVEL: A computer program for solving the radial Schrödinger equation for bound and quasibound levels
,”
J. Quant. Spectrosc. Radiat. Transfer
186
,
167
178
(
2017
).
You do not currently have access to this content.