In this paper, we present a novel efficient and parallel implementation, RelaxSE, for the calculation of the low-lying excited states and energies of strongly correlated systems. RelaxSE is based on the fully uncontracted multi-reference method of Selected Active Space + Single excitations. This method has been specifically designed to be able to tackle systems with numerous open shells per atoms. It is, however, computationally challenging due to the rapid scaling of the number of determinants and their non-trivial ordering induced by the selection process. We propose a combined determinant-driven and integral-driven approach designed for hybrid OpenMP/MPI parallelization. The performances of RelaxSE are evaluated on a controlled test set and show linear scaling with respect to the number of determinants and a small overhead due to the parallelization. Systems with up to 1 × 109 determinants are successfully computed.

1.
J. G.
Bednorz
and
K. A.
Müller
,
Z. Phys. B: Condens. Matter
64
,
189
(
1986
).
2.
D.
Johrendt
and
R.
Pöttgen
,
Angew. Chem., Int. Ed.
47
(
26
),
4782
(
2008
).
3.
D.
Saurel
,
C.
Simon
,
A.
Pautrat
,
C.
Martin
,
C.
Dewhurst
, and
A.
Brûlet
,
Phys. Rev. B
82
,
054427
(
2010
).
4.
N.
Hur
,
S.
Park
,
P. A.
Sharma
,
J. S.
Ahn
,
S.
Guha
, and
S.-W.
Cheong
,
Nature
429
,
392
395
(
2004
).
5.
I.
Affleck
,
J. Phys.: Condens. Matter
1
,
3047
(
1989
).
7.
F.
Illas
,
I. P. R.
de Moreira
,
C.
de Graaf
,
O.
Castell
, and
J.
Casanovas
,
Phys. Rev. B
56
,
5069
5072
(
1997
).
8.
I. P. R.
de Moreira
,
F.
Illas
,
C. J.
Calzado
,
J. F.
Sanz
,
J.-P.
Malrieu
,
N. B.
Amor
, and
D.
Maynau
,
Phys. Rev. B
59
,
R6593
R6596
(
1999
).
9.
M.-B.
Lepetit
and
A.
Gellé
,
Comput. Theor. Chem.
1116
,
59
(
2017
).
10.
J.
Miralles
,
J.-P.
Daudey
, and
R.
Caballol
,
Chem. Phys. Lett.
198
,
555
(
1992
).
11.
V. M.
García
 et al,
Chem. Phys. Lett.
238
,
222
(
1995
).
12.
V. M.
García
,
M.
Reguero
, and
R.
Caballol
,
Theor. Chem. Acc.
98
,
50
(
1997
).
13.
A.
Gellé
,
M. L.
Munzarová
,
M.-B.
Lepetit
, and
F.
Illas
,
Phys. Rev. B
68
,
125103
(
2003
).
14.
C. J.
Calzado
and
J.-P.
Malrieu
,
Eur. Phys. J. B
21
,
375
(
2001
).
15.
C.
Graaf
,
I. P. R.
de Moreira
,
F.
Illas
,
O.
Iglesias
, and
A.
Labarta
,
Phys. Rev. B
66
,
014448
(
2002
).
16.
A.
Gellé
and
M.-B.
Lepetit
,
Phys. Rev. B
74
,
235115
(
2006
).
17.
N.
Suaud
and
M.-B.
Lepetit
,
Phys. Rev. B
62
,
402
409
(
2000
).
18.
J.
Cabrero
,
N.
Ben Amor
,
C.
de Graaf
,
F.
Illas
, and
R.
Caballol
,
J. Phys. Chem. A
104
(
44
),
9983
(
2000
).
19.
A.
Gellé
,
J.
Varignon
, and
M.-B.
Lepetit
,
Europhys. Lett.
88
,
37003
(
2009
).
20.
J.
Varignon
,
S.
Petit
,
A.
Gellé
, and
M.-B.
Lepetit
,
J. Phys.: Condens. Matter
25
,
496004
(
2013
).
21.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Sigbahn
,
Chem. Phys.
48
(
2
),
157
173
(
1980
).
22.
B. N.
Parlett
,
The Symmetric Eigenvalue Problem
(
Prentice-Hall
,
1980
).
23.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
24.
M.
Pélissier
, private communication (
1988
).
25.
B.
Liu
, “
The simultaneous expansion method for the iterative solution of several of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices
,” in
Numerical Algorithms in Chemistry: Algebraic Methods
(
Lawrence Berkeley Laboratory, University of California
,
1978
), pp.
49
53
.
26.
N. W.
Winter
,
R. M.
Pitzer
, and
D. K.
Temple
,
J. Chem. Phys.
86
,
3549
(
1987
).
27.
A.
Gellé
and
M.-B.
Lepetit
,
J. Chem. Phys.
128
,
244716
(
2008
).
28.
M. B.
Lepetit
,
Theor. Chem. Acc.
135
,
91
(
2016
).
You do not currently have access to this content.