We describe a machine learning approach to rapidly tune density functional tight binding models for the description of detonation chemistry in organic molecular materials. Resulting models enable simulations on the several 10s of ps scales characteristic to these processes, with “quantum-accuracy.” We use this approach to investigate early shock chemistry in 3,4-bis(3-nitrofurazan-4-yl)furoxan, a hydrogen-free energetic material known to form onion-like nanocarbon particulates following detonation. We find that the ensuing chemistry is significantly characterized by the formation of large CxNyOz species, which are likely precursors to the experimentally observed carbon condensates. Beyond utility as a means of investigating detonation chemistry, the present approach can be used to generate quantum-based reference data for the development of full machine-learned interatomic potentials capable of simulation on even greater time and length scales, i.e., for applications where characteristic time scales exceed the reach of methods including Kohn–Sham density functional theory, which are commonly used for reference data generation.

1.
Z.
Martins
,
M. C.
Price
,
N.
Goldman
,
M. A.
Sephton
, and
M. J.
Burchell
, “
Shock synthesis of amino acids from impacting cometary and icy planet surface analogues
,”
Nat. Geosci.
6
,
1045
1049
(
2013
).
2.
M. P.
Kroonblawd
,
R. K.
Lindsey
, and
N.
Goldman
, “
Synthesis of functionalized nitrogen-containing polycyclic aromatic hydrocarbons and other prebiotic compounds in impacting glycine solutions
,”
Chem. Sci.
10
,
6091
6098
(
2019
).
3.
N.
Goldman
,
E. J.
Reed
,
L. E.
Fried
,
I.-F. W.
Kuo
, and
A.
Maiti
, “
Synthesis of glycine-containing complexes in impacts of comets on early earth
,”
Nat. Chem.
2
,
949
954
(
2010
).
4.
N. R.
Greiner
,
D. S.
Phillips
,
J. D.
Johnson
, and
F.
Volk
, “
Diamonds in detonation soot
,”
Nature
333
,
440
(
1988
).
5.
V. N.
Mochalin
,
O.
Shenderova
,
D.
Ho
, and
Y.
Gogotsi
, “
The properties and applications of nanodiamonds
,”
Nat. Nanotechnol.
7
,
11
(
2012
).
6.
M.
Bagge-Hansen
,
S.
Bastea
,
J. A.
Hammons
,
M. H.
Nielsen
,
L.
Lauderbach
,
R.
Hodgin
,
P.
Pagoria
,
C.
May
,
S.
Aloni
,
A.
Jones
 et al, “
Detonation synthesis of carbon nano-onions via liquid carbon condensation
,”
Nat. Commun.
10
,
3819
(
2019
).
7.
A.
Krüger
,
F.
Kataoka
,
M.
Ozawa
,
T.
Fujino
,
Y.
Suzuki
,
A. E.
Aleksenskii
,
A. Y.
Vul’
, and
E.
Ōsawa
, “
Unusually tight aggregation in detonation nanodiamond: Identification and disintegration
,”
Carbon
43
,
1722
1730
(
2005
).
8.
V. M.
Titov
,
V. F.
Anisichkin
, and
I. Y.
Mal’kov
, “
Synthesis of ultradispersed diamond in detonation waves
,”
Combust., Explos. Shock Waves
25
,
372
379
(
1989
).
9.
M. R.
Armstrong
,
R. K.
Lindsey
,
N.
Goldman
,
M. H.
Nielsen
,
E.
Stavrou
,
L. E.
Fried
,
J. M.
Zaug
, and
S.
Bastea
, “
Ultrafast shock synthesis of nanocarbon from a liquid precursor
,”
Nat. Commun.
11
,
353
(
2020
).
10.
W. J.
Nellis
,
F. H.
Ree
,
M.
Van Thiel
, and
A. C.
Mitchell
, “
Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar)
,”
J. Chem. Phys.
75
,
3055
3063
(
1981
).
11.
S.
Bastea
, “
Nanocarbon condensation in detonation
,”
Sci. Rep.
7
,
42151
(
2017
).
12.
V. M.
Titov
,
E. R.
Pruuél
,
K. A.
Ten
,
L. A.
Luk’yanchikov
,
L. A.
Merzhievskii
,
B. P.
Tolochko
,
V. V.
Zhulanov
, and
L. I.
Shekhtman
, “
Experience of using synchrotron radiation for studying detonation processes
,”
Combust., Explos. Shock Waves
47
,
615
626
(
2011
).
13.
M.
Bagge-Hansen
,
L.
Lauderbach
,
R.
Hodgin
,
S.
Bastea
,
L.
Fried
,
A.
Jones
,
T.
van Buuren
,
D.
Hansen
,
J.
Benterou
,
C.
May
,
T.
Graber
,
B. J.
Jensen
, and
T. M.
Willey
, “
Measurement of carbon condensates using small-angle X-ray scattering during detonation of the high explosive hexanitrostilbene
,”
J. Appl. Phys.
117
,
245902
(
2019
).
14.
E. B.
Watkins
,
K. A.
Velizhanin
,
D. M.
Dattelbaum
,
R. L.
Gustavsen
,
T. D.
Aslam
,
D. W.
Podlesak
,
R. C.
Huber
,
M. A.
Firestone
,
B. S.
Ringstrand
,
T. M.
Willey
,
M.
Bagge-Hansen
,
R.
Hodgin
,
L.
Lauderbach
,
T.
van Buuren
,
N.
Sinclair
,
P. A.
Rigg
,
S.
Seifert
, and
T.
Gog
, “
Evolution of carbon clusters in the detonation products of the triaminotrinitrobenzene (TATB)-based explosive PBX 9502
,”
J. Phys. Chem. C
121
,
23129
23140
(
2017
).
15.
E.
Schwegler
,
M.
Sharma
,
F.
Gygi
, and
G.
Galli
, “
Melting of ice under pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
14779
14783
(
2008
).
16.
K. K. M.
Lee
,
L. R.
Benedetti
,
R.
Jeanloz
,
P. M.
Celliers
,
J. H.
Eggert
,
D. G.
Hicks
,
S. J.
Moon
,
A.
Mackinnon
,
L. B.
Da Silva
,
D. K.
Bradley
et al., “
Laser-driven shock experiments on precompressed water: Implications for ‘icy’ giant planets
,”
J. Chem. Phys.
125
,
014701
(
2006
).
17.
N.
Goldman
,
E. J.
Reed
, and
L. E.
Fried
, “
Quantum mechanical corrections to simulated shock Hugoniot temperatures
,”
J. Chem. Phys.
131
,
204103
(
2009
).
18.
F.
Dubnikova
,
R.
Kosloff
,
J.
Almog
,
Y.
Zeiri
,
R.
Boese
,
H.
Itzhaky
,
A.
Alt
, and
E.
Keinan
, “
Decomposition of triacetone triperoxide is an entropic explosion
,”
J. Am. Chem. Soc.
127
,
1146
1159
(
2005
).
19.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
20.
N.
Goldman
,
E. J.
Reed
,
I.-F. W.
Kuo
,
L. E.
Fried
,
C. J.
Mundy
, and
A.
Curioni
, “
Ab initio simulation of the equation of state and kinetics of shocked water
,”
J. Chem. Phys.
130
,
124517
(
2009
).
21.
N.
Goldman
,
L. E.
Fried
, and
L.
Koziol
, “
Using force-matched potentials to improve the accuracy of density functional tight binding for reactive conditions
,”
J. Chem. Theory Comput.
11
,
4530
4535
(
2015
).
22.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
, “
Self-consistent-charge density-functional tight-binding method for simulations of complex material properties
,”
Phys. Rev. B
58
,
7260
(
1998
).
23.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
24.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
(
1994
).
25.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
26.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
27.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
28.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
,
1396
(
1997
).
29.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
30.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
31.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2006
).
32.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
33.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
34.
M.
Parrinello
and
A.
Rahman
, “
Crystal structure and pair potentials: A molecular-dynamics study
,”
Phys. Rev. Lett.
45
,
1196
(
1980
).
35.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
36.
B.
Hourahine
,
B.
Aradi
,
V.
Blum
,
F.
Bonafé
,
A.
Buccheri
,
C.
Camacho
,
C.
Cevallos
,
M. Y.
Deshaye
,
T.
Dumitrică
,
A.
Dominguez
et al., “
DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
,”
J. Chem. Phys.
152
,
124101
(
2020
).
37.
A. K.
Rappé
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
 III
, and
W. M.
Skiff
, “
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
,
10024
10035
(
1992
).
38.
P.
Koskinen
and
V.
Mäkinen
, “
Density-functional tight-binding for beginners
,”
Comput. Mater. Sci.
47
,
237
253
(
2009
).
39.
M.
Gaus
,
Q.
Cui
, and
M.
Elstner
, “
DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB)
,”
J. Chem. Theory Comput.
7
,
931
948
(
2011
).
40.
R. K.
Lindsey
,
L. E.
Fried
, and
N.
Goldman
, “
ChIMES: A force matched potential with explicit three-body interactions for molten carbon
,”
J. Chem. Theory Comput.
13
,
6222
6229
(
2017
).
41.
N.
Goldman
,
B.
Aradi
,
R. K.
Lindsey
, and
L. E.
Fried
, “
Development of a multicenter density functional tight binding model for plutonium surface hydriding
,”
J. Chem. Theory Comput.
14
,
2652
2660
(
2018
).
42.
R. K.
Lindsey
,
L. E.
Fried
, and
N.
Goldman
, “
Application of the ChIMES force field to nonreactive molecular systems: Water at ambient conditions
,”
J. Chem. Theory Comput.
15
,
436
447
(
2019
).
43.
R. K.
Lindsey
,
N.
Goldman
,
L. E.
Fried
, and
S.
Bastea
, “
Many-body reactive force field development for carbon condensation in C/O systems under extreme conditions
,”
J. Chem. Phys.
153
,
054103
(
2020
).
44.
R. K.
Lindsey
,
L. E.
Fried
,
N.
Goldman
, and
S.
Bastea
, “
Active learning for robust, high-complexity reactive atomistic simulations
,”
J. Chem. Phys.
153
,
134117
(
2020
).
45.
R.
Tibshirani
, “
Regression shrinkage and selection via the LASSO
,”
J. R. Stat. Soc. B
58
,
267
288
(
1996
).
46.
S.
Bastea
and
L. E.
Fried
,
Shockwave Sci. Technol. Ref. Libr.
6
,
1
31
(
2012
).
47.
V. P.
Sinditskii
,
A. V.
Burzhava
,
A. B.
Sheremetev
, and
N. S.
Aleksandrova
, “
Thermal and combustion properties of 3, 4-bis (3-nitrofurazan-4-yl) furoxan (DNTF)
,”
Propellants, Explos., Pyrotech.
37
,
575
580
(
2012
).
48.
E. J.
Reed
,
L. E.
Fried
, and
J.
Joannopoulos
, “
A method for tractable dynamical studies of single and double shock compression
,”
Phys. Rev. Lett.
90
,
235503
(
2003
).
49.
N.
Goldman
and
S.
Bastea
, “
Nitrogen oxides as a chemistry trap in detonating oxygen-rich materials
,”
J. Phys. Chem. A
118
,
2897
2903
(
2014
).
50.
M. R.
Manaa
,
L. E.
Fried
,
C. F.
Melius
,
M.
Elstner
, and
T.
Frauenheim
, “
Decomposition of HMX at extreme conditions: A molecular dynamics simulation
,”
J. Phys. Chem. A
106
,
9024
9029
(
2002
).
51.
R. K.
Lindsey
,
N.
Goldman
,
L. E.
Fried
, and
S.
Bastea
, “
Uncovering classicality in chemistry-coupled phase separation
” (unpublished).
52.
J. A.
Viecelli
,
S.
Bastea
,
J. N.
Glosli
, and
F. H.
Ree
, “
Phase transformations of nanometer size carbon particles in shocked hydrocarbons and explosives
,”
J. Chem. Phys.
115
,
2730
2736
(
2001
).
53.
E. J.
Reed
,
L. E.
Fried
,
M. R.
Manaa
, and
J. D.
Joannopoulos
, in
A Multi-Scale Approach to Molecular Dynamics Simulations of Shockwaves
(
Elsevier
New York
,
2005
), Chap. 10, pp.
297
326
.
54.
E. J.
Reed
,
L. E.
Fried
,
W. D.
Henshaw
, and
C. M.
Tarver
, “
Analysis of simulation technique for steady shock waves in materials with analytical equations of state
,”
Phys. Rev. E
74
,
056706
(
2006
).
55.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Phys. Chem. C
117
,
1
19
(
1995
).
56.
Q.-h.
Wang
, “
Properties of DNTF-based melt-cast explosives
,”
Chin. J. Explos. Propellants
26
,
57
59
(
2003
) (in Chinese).
57.
M. R.
Manaa
,
E. J.
Reed
,
L. E.
Fried
, and
N.
Goldman
, “
Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives
,”
J. Am. Chem. Soc.
131
,
5483
5487
(
2009
).
58.
T. C.
Leonhardi
and
B.
Militzer
, “
Ab initio simulations of liquid carbon monoxide at high pressure
,”
High Energy Density Phys.
22
,
41
45
(
2017
).
59.
C. J.
Wu
,
L. E.
Fried
,
L. H.
Yang
,
N.
Goldman
, and
S.
Bastea
, “
Catalytic behavior of dense hot water
,”
Nat. Chem.
1
,
57
62
(
2009
).

Supplementary Material

You do not currently have access to this content.