Understanding the properties of water under either soft or hard confinement has been an area of great interest, but nanostructured amphiphilic polymers that provide a secondary confinement have garnered significantly less attention. Here, a series of statistical copolymers of 2-hydroxyethyl acrylate (HEA) and 2-(N-ethylperfluorooctane sulfonamido)ethyl methacrylate (FOSM) are swollen to equilibrium in water to form nanostructured physically cross-linked hydrogels to probe the effect of soft confinement on the dynamics of water. Changing the composition of the copolymer from 10 to 21 mol. % FOSM decreases the average size of the assembled FOSM cross-link, but also the spacing between the cross-links in the hydrogels with the mean distance between the FOSM aggregates decreasing from 3.9 to 2.7 nm. The dynamics of water within the hydrogels were assessed with quasielastic neutron scattering. These hydrogels exhibit superior performance for inhibition of water crystallization on supercooling in comparison to analogous hydrogels with different hydrophilic copolymer chemistries. Despite the lower water crystallinity, the self-diffusion coefficient for these hydrogels from the copolymers of HEA and FOSM decreases precipitously below 260 K, which is a counter to the nearly temperature invariant water dynamics reported previously with an analogous hydrogel [Wiener et al., J. Phys. Chem. B 120, 5543 (2016)] that exhibits nearly temperature invariant dynamics to 220 K. These results point to chemistry dependent dynamics of water that is confined within amphiphilic hydrogels, where the interactions of water with the hydrophilic segments can qualitatively alter the temperature dependent dynamics of water in the supercooled state.

1.
F.
Mallamace
,
C.
Corsaro
, and
H. E.
Stanley
, “
Possible relation of water structural relaxation to water anomalies
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
4899
4904
(
2013
).
2.
J. R.
Errington
and
P. G.
Debenedetti
, “
Relationship between structural order and the anomalies of liquid water
,”
Nature
409
,
318
321
(
2001
).
3.
P.
Ball
and
J. E.
Hallsworth
, “
Water structure and chaotropicity: Their uses, abuses and biological implications
,”
Phys. Chem. Chem. Phys.
17
,
8297
8305
(
2015
).
4.
C. A.
Angell
, “
Amorphous water
,”
Annu. Rev. Phys. Chem.
55
,
559
583
(
2004
).
5.
R.
Bergman
and
J.
Swenson
, “
Dynamics of supercooled water in confined geometry
,”
Nature
403
,
283
286
(
2000
).
6.
N. E.
Levinger
, “
Water in confinement
,”
Science
298
,
1722
1723
(
2002
).
7.
S.
Cerveny
,
F.
Mallamace
,
J.
Swenson
,
M.
Vogel
, and
L.
Xu
, “
Confined water as model of supercooled water
,”
Chem. Rev.
116
,
7608
7625
(
2016
).
8.
H. K.
Christenson
, “
Confinement effects on freezing and melting
,”
J. Phys.: Condens. Matter
13
,
R95
R133
(
2001
).
9.
S.
Takahara
,
N.
Sumiyama
,
S.
Kittaka
,
T.
Yamaguchi
, and
M.-C.
Bellissent-Funel
, “
Neutron scattering study on dynamics of water molecules in MCM-41. 2. Determination of translational diffusion coefficient
,”
J. Phys. Chem. B
109
,
11231
11239
(
2005
).
10.
M.
Sattig
and
M.
Vogel
, “
Dynamic crossovers and stepwise solidification of confined water: A 2H NMR study
,”
J. Phys. Chem. Lett.
5
,
174
178
(
2014
).
11.
E. B.
Moore
and
V.
Molinero
, “
Ice crystallization in water’s ‘no-man’s land’
,”
J. Chem. Phys.
132
,
244504
(
2010
).
12.
S.
Cerveny
,
G. A.
Schwartz
,
R.
Bergman
, and
J.
Swenson
, “
Glass transition and relaxation processes in supercooled water
,”
Phys. Rev. Lett.
93
,
245702
(
2004
).
13.
K.
Domin
,
K.-Y.
Chan
,
H.
Yung
,
K. E.
Gubbins
,
M.
Jarek
,
A.
Sterczynska
, and
M.
Sliwinska-Bartkowiak
, “
Structure of ice in confinement: Water in mesoporous carbons
,”
J. Chem. Eng. Data
61
,
4252
4260
(
2016
).
14.
S.
Chakraborty
,
H.
Kumar
,
C.
Dasgupta
, and
P. K.
Maiti
, “
Confined water: Structure, dynamics, and thermodynamics
,”
Acc. Chem. Res.
50
,
2139
2146
(
2017
).
15.
R.
Epsztein
,
R. M.
DuChanois
,
C. L.
Ritt
,
A.
Noy
, and
M.
Elimelech
, “
Towards single-species selectivity of membranes with subnanometre pores
,”
Nat. Nanotechnol.
15
,
426
436
(
2020
).
16.
K.
Schmidt-Rohr
and
Q.
Chen
, “
Parallel cylindrical water nanochannels in nafion fuel-cell membranes
,”
Nat. Mater.
7
,
75
83
(
2008
).
17.
E.
Tombari
,
G.
Salvetti
,
C.
Ferrari
, and
G. P.
Johari
, “
Thermodynamic functions of water and ice confined to 2 nm radius pores
,”
J. Chem. Phys.
122
,
104712
(
2005
).
18.
T.
Yamaguchi
,
H.
Hashi
, and
S.
Kittaka
, “
X-ray diffraction study of water confined in activated carbon pores over a temperature range of 228–298 K
,”
J. Mol. Liq.
129
,
57
62
(
2006
).
19.
K.
Koga
,
H.
Tanaka
, and
X. C.
Zeng
, “
First-order transition in confined water between high-density liquid and low-density amorphous phases
,”
Nature
408
,
564
567
(
2000
).
20.
M.
Aso
,
K.
Ito
,
H.
Sugino
,
K.
Yoshida
,
T.
Yamada
,
O.
Yamamuro
,
S.
Inagaki
, and
T.
Yamaguchi
, “
Thermal behavior, structure, and dynamics of low-temperature water confined in mesoporous organosilica by differential scanning calorimetry, x-ray diffraction, and quasi-elastic neutron scattering
,”
Pure Appl. Chem.
85
,
289
305
(
2013
).
21.
K.
Morishige
, “
Influence of pore wall hydrophobicity on freezing and melting of confined water
,”
J. Phys. Chem. C
122
,
5013
5019
(
2018
).
22.
C. G.
Wiener
,
Z.
Qiang
,
Y.
Xia
,
M.
Tyagi
, and
B. D.
Vogt
, “
Impact of surface wettability on dynamics of supercooled water confined in nitrogen-doped ordered mesoporous carbon
,”
Phys. Chem. Chem. Phys.
20
,
28019
28025
(
2018
).
23.
F.
Sacchetti
,
A.
Orecchini
,
A.
Cunsolo
,
F.
Formisano
, and
C.
Petrillo
, “
Coherent neutron scattering study of confined water in Nafion
,”
Phys. Rev. B
80
,
024306
(
2009
).
24.
S.
Cerveny
,
Á.
Alegria
, and
J.
Colmenero
, “
Universal features of water dynamics in solutions of hydrophilic polymers, biopolymers, and small glass-forming materials
,”
Phys. Rev. E
77
,
031803
(
2008
).
25.
T. L.
Spehr
,
B.
Frick
,
M.
Zamponi
, and
B.
Stühn
, “
Dynamics of water confined to reverse AOT micelles
,”
Soft Matter
7
,
5745
5755
(
2011
).
26.
G.
Paradossi
,
I.
Finelli
,
F.
Natali
,
M. T. F.
Telling
, and
E.
Chiessi
, “
Polymer and water dynamics in poly(vinyl alcohol)/poly(methacrylate) networks. A molecular dynamics simulation and incoherent neutron scattering investigation
,”
Polymers
3
,
1805
1832
(
2011
).
27.
V.
Klepko
, “
Neutron transmission and quasielastic neutron scattering in polymer hydrogels
,”
Polym. Eng. Sci.
39
,
437
442
(
1997
).
28.
C.
Chiapponi
,
M. T.
Di Bari
,
Y.
Gerelli
,
A.
Deriu
,
E.
Chiessi
,
I.
Finelli
,
G.
Paradossi
,
M.
Russina
,
Z.
Izaola
, and
V.
Garcia Sakai
, “
Water dynamics in physical hydrogels based on partially hydrophobized hyaluronic acid
,”
J. Phys. Chem. B
116
,
12915
12921
(
2012
).
29.
T.
Nakano
and
T.
Nakaoki
, “
Coagulation size of freezable water in poly(vinyl alcohol) hydrogels formed by different freeze/thaw cycle periods
,”
Polym. J.
43
,
875
880
(
2011
).
30.
X.
Du
,
D.
Seeman
,
P. L.
Dubin
, and
D. A.
Hoagland
, “
Nonfreezing water structuration in heteroprotein Coacervates
,”
Langmuir
31
,
8661
8666
(
2015
).
31.
F.
Sterpone
,
G.
Stirnemann
, and
D.
Laage
, “
Magnitude and molecular origin of water slowdown next to a protein
,”
J. Am. Chem. Soc.
134
,
4116
4119
(
2012
).
32.
P. L.
Davies
, “
Ice-binding proteins: A remarkable diversity of structures for stopping and starting ice growth
,”
Trends Biochem. Sci.
39
,
548
555
(
2014
).
33.
A. A.
Burkey
,
C. L.
Riley
,
L. K.
Wang
,
T. A.
Hatridge
, and
N. A.
Lynd
, “
Understanding poly(vinyl alcohol)-mediated ice recrystallization inhibition through ice adsorption measurement and pH effects
,”
Biomacromolecules
19
,
248
255
(
2018
).
34.
M.
Hasan
,
A. E. R.
Fayter
, and
M. I.
Gibson
, “
Ice recrystallization inhibiting polymers enable glycerol-free cryopreservation of microorganisms
,”
Biomacromolecules
19
,
3371
3376
(
2018
).
35.
B.
Graham
,
A. E. R.
Fayter
,
J. E.
Houston
,
R. C.
Evans
, and
M. I.
Gibson
, “
Facially amphipathic glycopolymers inhibit ice recrystallization
,”
J. Am. Chem. Soc.
140
,
5682
5685
(
2018
).
36.
T. R.
Congdon
,
R.
Notman
, and
M. I.
Gibson
, “
Influence of block copolymerization on the antifreeze protein mimetic ice recrystallization inhibition activity of poly(vinyl alcohol)
,”
Biomacromolecules
17
,
3033
3039
(
2016
).
37.
G.
Paradossi
,
F.
Cavalieri
,
E.
Chiessi
, and
M. T. F.
Telling
, “
Supercooled water in PVA matrixes: I. An incoherent quasi-elastic neutron scattering (QENS) study
,”
J. Phys. Chem. B
107
,
8363
8371
(
2003
).
38.
E.
Chiessi
,
F.
Cavalieri
, and
G.
Paradossi
, “
Supercooled water in PVA matrixes. II. A molecular dynamics simulation study and comparison with QENS results
,”
J. Phys. Chem. B
109
,
8091
8096
(
2005
).
39.
S.
Wu
,
Z.
He
,
J.
Zang
,
S.
Jin
,
Z.
Wang
,
J.
Wang
,
Y.
Yao
, and
J.
Wang
, “
Heterogeneous ice nucleation correlates with bulk-like interfacial water
,”
Sci. Adv.
5
,
eaat9825
(
2019
).
40.
H.
Niu
,
F.
Wang
, and
R. A.
Weiss
, “
Hydrophobic/hydrophilic triblock copolymers: Synthesis and properties of physically cross-linked hydrogels
,”
Macromolecules
48
,
645
654
(
2015
).
41.
K. J.
Henderson
,
T. C.
Zhou
,
K. J.
Otim
, and
K. R.
Shull
, “
Ionically cross-linked triblock copolymer hydrogels with high strength
,”
Macromolecules
43
,
6193
6201
(
2010
).
42.
E. G.
Kelley
,
R. P.
Murphy
,
J. E.
Seppala
,
T. P.
Smart
,
S. D.
Hann
,
M. O.
Sullivan
, and
T. H.
Epps
, “
Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway
,”
Nat. Commun.
5
,
3599
(
2014
).
43.
J.
Tian
,
T. A. P.
Seery
,
D. L.
Ho
, and
R. A.
Weiss
, “
Physically cross-linked alkylacrylamide hydrogels: A SANS analysis of the microstructure
,”
Macromolecules
37
,
10001
10008
(
2004
).
44.
C.
Wang
,
C. G.
Wiener
,
P. I.
Sepulveda-Medina
,
C.
Ye
,
D. S.
Simmons
,
R.
Li
,
M.
Fukuto
,
R. A.
Weiss
, and
B. D.
Vogt
, “
Antifreeze hydrogels from amphiphilic statistical copolymers
,”
Chem. Mater.
31
,
135
145
(
2019
).
45.
C. G.
Wiener
,
M.
Tyagi
,
Y.
Liu
,
R. A.
Weiss
, and
B. D.
Vogt
, “
Supramolecular hydrophobic aggregates in hydrogels partially inhibit ice formation
,”
J. Phys. Chem. B
120
,
5543
5552
(
2016
).
46.
P. I.
Sepulveda-Medina
,
C.
Wang
,
R.
Li
,
M.
Fukuto
,
R. A.
Weiss
, and
B. D.
Vogt
, “
Kinetically controlled morphology in copolymer-based hydrogels crosslinked by crystalline nanodomains determines efficacy of ice inhibition
,”
Mol. Syst. Des. Eng.
5
,
645
655
(
2020
).
47.
C. C.
Pradzynski
,
R. M.
Forck
,
T.
Zeuch
,
P.
Slavicek
, and
U.
Buck
, “
A fully size-resolved perspective on the crystallization of water clusters
,”
Science
337
,
1529
1532
(
2012
).
48.
F.
Mallamace
,
C.
Corsaro
,
D.
Mallamace
,
S.-H.
Chen
,
E.
Fratini
, and
P.
Baglioni
, “
The Boson peak interpretation and evolution in confined amorphous water
,”
Sci. China Phys. Mech. Astron.
62
,
107004
(
2019
).
49.
D.
Noferini
,
A.
Faraone
,
M.
Rossi
,
E.
Mamontov
,
E.
Fratini
, and
P.
Baglioni
, “
Disentangling polymer network and hydration water dynamics in polyhydroxyethyl methacrylate physical and chemical hydrogels
,”
J. Phys. Chem. C
123
,
19183
19194
(
2019
).
50.
J.
Ilavsky
, “
Nika: Software for two-dimensional data reduction
,”
J. Appl. Crystallogr.
45
,
324
328
(
2012
).
51.
S. R.
Kline
, “
Reduction and analysis of SANS and USANS data using IGOR pro
,”
J. Appl. Crystallogr.
39
,
895
900
(
2006
).
52.
R. T.
Azuah
,
L. R.
Kneller
,
Y.
Qiu
,
P. L. W.
Tregenna-Piggott
,
C. M.
Brown
,
J. R. D.
Copley
, and
R. M.
Dimeo
, “
DAVE: A comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data
,”
J. Res. Natl. Inst. Stand. Technol.
114
,
341
358
(
2009
).
53.
K. S.
Singwi
and
A.
Sjölander
, “
Diffusive motions in water and cold neutron scattering
,”
Phys. Rev.
119
,
863
871
(
1960
).
54.
V. G.
Sakai
and
A.
Arbe
, “
Quasielastic neutron scattering in soft matter
,”
Curr. Opin. Colloid Interface Sci.
14
,
381
390
(
2009
).
55.
P. J.
Flory
and
J.
Rehner
, “
Statistical mechanics of cross-linked polymer networks II swelling
,”
J. Chem. Phys.
11
,
521
526
(
1943
).
56.
G. D.
Wignall
and
Y. B.
Melnichenko
, “
Recent applications of small-angle neutron scattering in strongly interacting soft condensed matter
,”
Rep. Prog. Phys.
68
,
1761
1810
(
2005
).
57.
S.
Koizumi
,
M.
Monkenbusch
,
D.
Richter
,
D.
Schwahn
, and
B.
Farago
, “
Concentration fluctuations in polymer gel investigated by neutron scattering: Static inhomogeneity in swollen gel
,”
J. Chem. Phys.
121
,
12721
12731
(
2004
).
58.
M.
Lang
and
J. U.
Sommer
,
On the Origin of the Scattering of Gels and Swollen Polymer Networks, 5th European Conference on Constitute Models for Rubber
(
Taylor & Francis
,
Paris, France
,
2007
), p.
147
.
59.
Z. K.
Zander
,
G.
Hua
,
C. G.
Wiener
,
B. D.
Vogt
, and
M. L.
Becker
, “
Control of mesh size and modulus by kinetically dependent cross-linking in hydrogels
,”
Adv. Mater.
27
,
6283
6288
(
2015
).
60.
R. A.
Dilla
,
C. M. M.
Motta
,
Y.
Xu
,
Z. K.
Zander
,
N.
Bernard
,
C. G.
Wiener
,
B. D.
Vogt
, and
M. L.
Becker
, “
Mechanically tunable, human mesenchymal stem cell viable poly(ethylene glycol)-oxime hydrogels with invariant precursor composition, concentration, and stoichiometry
,”
Mater. Today Chem.
11
,
244
252
(
2019
).
61.
S.
Prevost
,
T.
Lopian
,
M.
Pleines
,
O.
Diat
, and
T.
Zemb
, “
Small-angle scattering and morphologies of ultra-flexible microemulsions
,”
J. Appl. Crystallogr.
49
,
2063
2072
(
2016
).
62.
F.
Domenici
,
E.
Guazzelli
,
E.
Masotti
,
N.
Mahmoudi
,
S.
Gabrielli
,
M. T. F.
Telling
,
E.
Martinelli
,
G.
Galli
, and
G.
Paradossi
, “
Understanding the temperature-responsive self-assemblies of amphiphilic random copolymers by SANS in D2O solution
,”
Macromol. Chem. Phys.
222
,
2000447
(
2021
).
63.
E.
Martinelli
,
E.
Guazzelli
,
G.
Galli
,
M. T. F.
Telling
,
G. D.
Poggetto
,
B.
Immirzi
,
F.
Domenici
, and
G.
Paradossi
, “
Prolate and temperature-responsive self-assemblies of amphiphilic random copolymers with perfluoroalkyl and polyoxyethylene side chains in solution
,”
Macromol. Chem. Phys.
219
,
1800210
(
2018
).
64.
L. A.
Bulavin
,
N. P.
Malomuzh
, and
K. N.
Pankratov
, “
Character of the thermal motion of water molecules according to the data on quasielastic incoherent scattering of slow neutrons
,”
J. Struct. Chem.
47
,
48
55
(
2006
).
65.
K. T.
Gillen
,
D. C.
Douglass
, and
M. J. R.
Hoch
, “
Self-diffusion in liquid water to −31 °C
,”
J. Chem. Phys.
57
,
5117
(
1972
).
66.
K.
Krynicki
,
C. D.
Green
, and
D. W.
Sawyer
, “
Pressure and temperature-dependence of self-diffusion in water
,”
Faraday Discuss.
66
,
199
208
(
1978
).
67.
F.
Cavalieri
,
E.
Chiessi
,
I.
Finelli
,
F.
Natali
,
G.
Paradossi
, and
M. F.
Telling
, “
Water, solute, and segmental dynamics in polysaccharide hydrogels
,”
Macromol. Biosci.
6
,
579
589
(
2006
).
68.
F.
Volino
and
A. J.
Dianoux
, “
Neutron incoherent-scattering law for diffusion in a potential of spherical-symmetry: General formalism and application to diffusion inside a sphere
,”
Mol. Phys.
41
,
271
279
(
1980
).
69.
S.
Bae
,
K.
Chakrabarty
,
T.
Seery
, and
R.
Weiss
, “
Thermoprocessible hydrogels. I. Synthesis and properties of polyacrylamides with perfluoroalkyl side chains
,”
J. Macromol. Sci., Part A
36
,
931
948
(
1999
).
70.
J.
Teixeira
,
M.-C.
Bellissent-Funel
,
S. H.
Chen
, and
A. J.
Dianoux
, “
Experimental-determination of the nature of diffusive motions of water-molecules at low-temperatures
,”
Phys. Rev. A
31
,
1913
1917
(
1985
).
71.
F.
Sciortino
,
P.
Gallo
,
P.
Tartaglia
, and
S.-H.
Chen
, “
Supercooled water and the kinetic glass transition
,”
Phys. Rev. E
54
,
6331
6343
(
1996
).
72.
R.
Naohara
,
K.
Narita
, and
T.
Ikeda-Fukazawa
, “
Change in hydrogen bonding structures of a hydrogel with dehydration
,”
Chem. Phys. Lett.
670
,
84
88
(
2017
).
73.
L.
Bosio
,
G. P.
Johari
,
M.
Oumezzine
, and
J.
Teixeira
, “
X-ray and neutron-scattering studies of the structure of water in a hydrogel
,”
Chem. Phys. Lett.
188
,
113
118
(
1992
).

Supplementary Material

You do not currently have access to this content.