Scaling of the behavior of a nanodevice means that the device function (selectivity) is a unique smooth and monotonic function of a scaling parameter that is an appropriate combination of the system’s parameters. For the uniformly charged cylindrical nanopore studied here, these parameters are the electrolyte concentration, c, voltage, U, the radius and the length of the nanopore, R and H, and the surface charge density on the nanopore’s surface, σ. Due to the non-linear dependence of selectivities on these parameters, scaling can only be applied in certain limits. We show that the Dukhin number, Du=|σ|/eRc|σ|λD2/eR (λD is the Debye length), is an appropriate scaling parameter in the nanotube limit (H). Decreasing the length of the nanopore, namely, approaching the nanohole limit (H → 0), an alternative scaling parameter has been obtained, which contains the pore length and is called the modified Dukhin number: mDu ∼ Du H/λD ∼ |σ|λDH/eR. We found that the reason for non-linearity is that the double layers accumulating at the pore wall in the radial dimension correlate with the double layers accumulating at the entrances of the pore near the membrane on the two sides. Our modeling study using the Local Equilibrium Monte Carlo method and the Poisson–Nernst–Planck theory provides concentration, flux, and selectivity profiles that show whether the surface or the volume conduction dominates in a given region of the nanopore for a given combination of the variables. We propose that the inflection point of the scaling curve may be used to characterize the transition point between the surface and volume conductions.

1.
D.
Fertig
,
B.
Matejczyk
,
M.
Valiskó
,
D.
Gillespie
, and
D.
Boda
,
J. Phys. Chem. C
123
,
28985
(
2019
).
3.
L.
Blum
and
J. S.
Hoeye
,
J. Phys. Chem.
81
,
1311
(
1977
).
4.
W.
Nonner
,
L.
Catacuzzeno
, and
B.
Eisenberg
,
Biophys. J.
79
,
1976
(
2000
).
5.
E.
Mádai
,
B.
Matejczyk
,
A.
Dallos
,
M.
Valiskó
, and
D.
Boda
,
Phys. Chem. Chem. Phys.
20
,
24156
(
2018
).
6.
Z.
Siwy
,
E.
Heins
,
C. C.
Harrell
,
P.
Kohli
, and
C. R.
Martin
,
J. Am. Chem. Soc.
126
,
10850
(
2004
).
7.
S.
Garaj
,
W.
Hubbard
,
A.
Reina
,
J.
Kong
,
D.
Branton
, and
J. A.
Golovchenko
,
Nature
467
,
190
(
2010
).
8.
S.
Garaj
,
S.
Liu
,
J. A.
Golovchenko
, and
D.
Branton
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
12192
(
2013
).
9.
10.
M.
Planck
,
Ann. Phys. Chem.
275
,
161
(
1890
).
11.
A.
Malasics
,
D.
Gillespie
, and
D.
Boda
,
J. Chem. Phys.
128
,
124102
(
2008
).
12.
A.
Malasics
and
D.
Boda
,
J. Chem. Phys.
132
,
244103
(
2010
).
13.
S.
Levine
,
J. R.
Marriott
,
G.
Neale
, and
N.
Epstein
,
J. Colloid Interface Sci.
52
,
136
(
1975
).
14.
S.
Balme
,
F.
Picaud
,
M.
Manghi
,
J.
Palmeri
,
M.
Bechelany
,
S.
Cabello-Aguilar
,
A.
Abou-Chaaya
,
P.
Miele
,
E.
Balanzat
, and
J. M.
Janot
,
Sci. Rep.
5
,
10135
(
2015
).
15.
Y.
Uematsu
,
R. R.
Netz
,
L.
Bocquet
, and
D. J.
Bonthuis
,
J. Phys. Chem. B
122
,
2992
(
2018
).
16.
Y.
Green
,
J. Chem. Phys.
154
,
084705
(
2021
).
17.
M. Z.
Bazant
,
K.
Thornton
, and
A.
Ajdari
,
Phys. Rev. E
70
,
021506
(
2004
).
18.
K. T.
Chu
and
M. Z.
Bazant
,
Phys. Rev. E
74
,
011501
(
2006
).
19.
L.
Bocquet
and
E.
Charlaix
,
Chem. Soc. Rev.
39
,
1073
(
2010
).
20.
J. J.
Bikerman
,
Trans. Faraday Soc.
35
,
154
(
1940
).
21.
S. S.
Dukhin
,
Adv. Colloid Interface Sci.
44
,
1
(
1993
).
22.
Solid-Liquid Interfaces
, Fundamentals of Interface and Colloid Science Vol. 2, edited by
J. J.
Lyklema
,
A.
de Keizer
,
B.
Bijsterbosch
,
G.
Fleer
, and
M. A.
Cohen Stuart
(
ElsevierAcademic Press
,
1995
).
23.
A. S.
Khair
and
T. M.
Squires
,
J. Fluid Mech.
615
,
323
(
2008
).
24.
S.
Das
and
S.
Chakraborty
,
Langmuir
26
,
11589
(
2010
).
25.
T. A.
Zangle
,
A.
Mani
, and
J. G.
Santiago
,
Chem. Soc. Rev.
39
,
1014
(
2010
).
26.
C.
Lee
,
L.
Joly
,
A.
Siria
,
A.-L.
Biance
,
R.
Fulcrand
, and
L.
Bocquet
,
Nano Lett.
12
,
4037
(
2012
).
27.
H.-C.
Yeh
,
M.
Wang
,
C.-C.
Chang
, and
R.-J.
Yang
,
Israel J. Chem.
54
,
1533
(
2014
).
28.
Y.
Ma
,
J.
Guo
,
L.
Jia
, and
Y.
Xie
,
ACS Sens.
3
,
167
(
2017
).
29.
T.
Xiong
,
K.
Zhang
,
Y.
Jiang
,
P.
Yu
, and
L.
Mao
,
Sci. China: Chem.
62
,
1346
(
2019
).
30.
A. R.
Poggioli
,
A.
Siria
, and
L.
Bocquet
,
J. Phys. Chem. B
123
,
1171
(
2019
).
31.
S. D.
Cengio
and
I.
Pagonabarraga
,
J. Chem. Phys.
151
,
044707
(
2019
).
32.
N.
Kavokine
,
R. R.
Netz
, and
L.
Bocquet
,
Annu. Rev. Fluid Mech.
53
,
377
(
2020
).
33.
Y.
Noh
and
N. R.
Aluru
,
ACS Nano
14
,
10518
(
2020
).
34.
A.
Levy
,
J. P.
de Souza
, and
M. Z.
Bazant
,
J. Colloid Interface Sci.
579
,
162
(
2020
).
35.
D.
Fertig
,
Z.
Sarkadi
,
M.
Valiskó
, and
D.
Boda
, “
Scaling for rectification of bipolar nanopores as a function of a modified Dukhin number: The case of 1:1 electrolytes
,” arXiv:2103.17085 [cond-mat.mes-hall] (
2021
).
36.
D.
Fertig
,
M.
Valiskó
, and
D.
Boda
,
Phys. Chem. Chem. Phys.
22
,
19033
(
2020
).
37.
D.
Boda
and
D.
Gillespie
,
J. Chem. Theory Comput.
8
,
824
(
2012
).
38.
D.
Boda
,
R.
Kovács
,
D.
Gillespie
, and
T.
Kristóf
,
J. Mol. Liq.
189
,
100
(
2014
).
39.
D.
Boda
, “
Monte Carlo simulation of electrolyte solutions in biology: In and out of equilibrium
,” in
Annual Reports in Computational Chemistry
, edited by
R. A.
Wheeler
(
Elsevier
,
2014
), Vol. 10, Chap. 5, pp.
127
163
.
40.
D.
Fertig
,
E.
Mádai
,
M.
Valiskó
, and
D.
Boda
,
Hung. J. Ind. Chem.
45
,
73
(
2017
).
41.
H. K.
Gummel
,
IEEE Trans. Electron Devices
11
,
455
(
1964
).
42.
B.
Matejczyk
,
M.
Valiskó
,
M.-T.
Wolfram
,
J.-F.
Pietschmann
, and
D.
Boda
,
J. Chem. Phys.
146
,
124125
(
2017
).
43.
E.
Mádai
,
M.
Valiskó
,
A.
Dallos
, and
D.
Boda
,
J. Chem. Phys.
147
,
244702
(
2017
).

Supplementary Material

You do not currently have access to this content.