Recombination dynamics of geminate p-aminophenylthiyl (PAPT) radicals produced from the photodissociation of bis(p-aminophenyl) disulfide in ionic liquids (ILs) were investigated by transient absorption spectroscopy. ILs with various cationic species were used to examine the effect of viscosity and polarity on recombination dynamics. Experimentally obtained recombination yields and dynamics were found to be virtually independent of the cation species, despite the viscosity range of the solvent ILs being extensive, spanning from a few tens of mPa s to several hundred mPa s. We applied a theoretical analysis model based on the diffusion equation to the time profiles of the experimentally determined recombination yields of geminate PAPT radicals. The square well potential was incorporated into the diffusion equation to consider the concerted dynamics of solvent cage formation and recombination. A long-time asymptotic expression for the survival probability of the photodissociated products was derived and used to simulate the experimentally obtained time profile of the recombination yield. The time profiles in the range of 20–1000 ps and the final yield were successfully simulated by the asymptotic expression of the square well potential model. The optimized parameters used for the fit, including the mutual diffusion coefficient of the radical pairs, cage radius of the potential well, and well depth, were discussed in terms of the diffusion coefficient conventional theory and the potential mean force estimated from the molecular dynamics simulation for the photodissociation reaction in ILs.

1.
A. L.
Harris
,
J. K.
Brown
, and
C. B.
Harris
,
Annu. Rev. Phys. Chem.
39
(
1
),
341
366
(
1988
).
2.
J.
Franck
and
E.
Rabinowitsch
,
Trans. Faraday Soc.
30
,
120
130
(
1934
).
3.
T. W.
Scott
and
S. N.
Liu
,
J. Phys. Chem.
93
(
4
),
1393
1396
(
1989
).
4.
T.
Bultmann
and
N. P.
Ernsting
,
J. Phys. Chem.
100
(
50
),
19417
19424
(
1996
).
5.
Y.
Kimura
,
K.
Sugihara
,
M.
Terazima
, and
N.
Hirota
,
Bull. Chem. Soc. Jpn.
70
(
11
),
2657
2664
(
1997
).
6.
Y.
Kimura
and
N.
Saga
,
J. Mol. Liq.
119
(
1-3
),
113
117
(
2005
).
7.
K.
Osawa
,
M.
Terazima
, and
Y.
Kimura
,
Chem. Phys. Lett.
564
,
21
25
(
2013
).
8.
Y.
Hirata
,
M.
Ohta
,
T.
Okada
, and
N.
Mataga
,
J. Phys. Chem.
96
(
4
),
1517
1520
(
1992
).
9.
F. C.
Thyrion
,
J. Phys. Chem.
77
(
12
),
1478
1482
(
1973
).
10.
F. C.
Collins
and
G. E.
Kimball
,
J. Colloid Sci.
4
(
4
),
425
437
(
1949
).
11.
J. R.
Lakowicz
,
M. L.
Johnson
,
I.
Gryczynski
,
N.
Joshi
, and
G.
Laczko
,
J. Phys. Chem.
91
(
12
),
3277
3285
(
1987
).
12.
G. C.
Joshi
,
R.
Bhatnagar
,
S.
Doraiswamy
, and
N.
Periasamy
,
J. Phys. Chem.
94
(
7
),
2908
2914
(
1990
).
13.
M.
Sikorski
,
E.
Krystkowiak
, and
R. P.
Steer
,
J. Photochem. Photobiol., A
117
(
1
),
1
16
(
1998
).
14.
E.
Krystkowiak
and
A.
Maciejewski
,
J. Chem. Phys.
117
(
12
),
5802
5809
(
2002
).
15.
N.
Agmon
,
J. Phys. Chem.
94
(
7
),
2959
2963
(
1990
).
16.
K.
Ibuki
and
M.
Ueno
,
J. Chem. Phys.
107
(
17
),
6594
6602
(
1997
).
17.
K. M.
Hong
and
J.
Noolandi
,
J. Chem. Phys.
68
(
11
),
5163
5171
(
1978
).
18.
K.
Lee
,
J.
Sung
,
C. H.
Choi
, and
S.
Lee
,
J. Chem. Phys.
152
(
13
),
134102
(
2020
).
19.
V.
Strehmel
,
J. F.
Wishart
,
D. E.
Polyansky
, and
B.
Strehmel
,
ChemPhysChem
10
(
17
),
3112
3118
(
2009
).
20.
T.
Okada
,
T.
Yago
,
T.
Takamasu
, and
M.
Wakasa
,
Phys. Chem. Chem. Phys.
14
(
10
),
3490
3497
(
2012
).
21.
S.
Berdzinski
,
J.
Horst
,
P.
Straßburg
, and
V.
Strehmel
,
ChemPhysChem
14
(
9
),
1899
1908
(
2013
).
22.
Y.
Kimura
,
T.
Fukui
,
S.
Okazoe
,
H.
Miyabayashi
, and
T.
Endo
,
J. Mol. Liq.
289
,
111128
(
2019
).
23.
K.
Fujii
,
H.
Nakano
,
H.
Sato
, and
Y.
Kimura
,
Phys. Chem. Chem. Phys.
23
,
4569
4579
(
2021
).
24.
M. J.
Frisch
 et al, Gaussian 09,
Gaussian, Inc.
,
Wallingford, CT
,
2010
.
25.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
(
16
),
1701
1718
(
2005
).
26.
C.
Kutzner
,
S.
Páll
,
M.
Fechner
,
A.
Esztermann
,
B. L.
de Groot
, and
H.
Grubmüller
,
J. Comput. Chem.
40
(
27
),
2418
2431
(
2019
).
27.
S. A.
Rice
,
Diffusion-Limited Reactions
(
Elsevier
,
1985
).
28.
G.
Wilemski
and
M.
Fixman
,
J. Chem. Phys.
58
(
9
),
4009
4019
(
1973
).
29.
A.
Kaintz
,
G.
Baker
,
A.
Benesi
, and
M.
Maroncelli
,
J. Phys. Chem. B
117
(
39
),
11697
11708
(
2013
).
30.
Y.
Kimura
,
Y.
Kida
,
Y.
Matsushita
,
Y.
Yasaka
,
M.
Ueno
, and
K.
Takahashi
,
J. Phys. Chem. B
119
(
25
),
8096
8103
(
2015
).
31.
A.
Bondi
,
J. Phys. Chem.
68
(
3
),
441
451
(
1964
).
32.
See, e.g.,
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simpler Liquids: With Applications to Soft Matter
, 4th ed. (
Academic Press
,
2013
).
33.
T.
Yamaguchi
,
E.
Nakahara
, and
S.
Koda
,
J. Phys. Chem. B
118
(
21
),
5752
5759
(
2014
).
34.
T.
Yamaguchi
,
K.
Mikawa
,
S.
Koda
,
K.
Fujii
,
H.
Endo
,
M.
Shibayama
,
H.
Hamano
, and
Y.
Umebayashi
,
J. Chem. Phys.
137
(
10
),
104511
(
2012
).
35.
H.
Tsuchida
,
T.
Takeda
,
Y.
Ishii
,
T.
Yago
, and
M.
Wakasa
,
J. Phys. Chem. B
123
(
40
),
8425
8432
(
2019
).
36.
K.
Ibuki
and
M.
Ueno
,
Bull. Chem. Soc. Jpn.
79
(
10
),
1509
1518
(
2006
).
37.
S. A.
Adelman
,
J. Chem. Phys.
64
(
1
),
124
130
(
1976
).
38.
K.
Ibuki
and
M.
Ueno
,
Bull. Chem. Soc. Jpn.
70
(
3
),
543
553
(
1997
).

Supplementary Material

You do not currently have access to this content.