Properties of crystalline and amorphous materials are characterized by the underlying long-range and local crystalline order. Deformations and defects are structural hallmarks of plasticity, ice formation, and crystal growth mechanisms. Partitioning topological networks into constituent crystal building blocks, which is the basis of topological identification criteria, is an intuitive approach for classification in both bulk and confinement. However, techniques reliant on the convex hull for assigning orientations of component units fail for non-convex blocks. Here, we propose a new framework, called Topological Unit Matching (TUM), which exploits information from topological criteria for an efficient shape-matching procedure. TUM is a general family of algorithms, capable of quantifying deformations and unambiguously determining grains of bulk and confined ice polymorphs. We show that TUM significantly improves the identification of quasi-one-dimensional ice by including deformed prism blocks. We demonstrate the efficacy of TUM by analyzing supercooled water nanoparticles, amorphous ice, and phase transitions in an ice nanotube. We also illustrate the superiority of TUM in resolving topological defect structures with minimal parameterization.

1.
F.
Sciortino
,
A.
Geiger
, and
H. E.
Stanley
, “
Effect of defects on molecular mobility in liquid water
,”
Nature
354
,
218
221
(
1991
).
2.
M.
Matsumoto
,
S.
Saito
, and
I.
Ohmine
, “
Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing
,”
Nature
416
,
409
413
(
2002
).
3.
M.
Fitzner
,
G. C.
Sosso
,
S. J.
Cox
, and
A.
Michaelides
, “
Ice is born in low-mobility regions of supercooled liquid water
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
2009
2014
(
2019
).
4.
T.
Li
,
D.
Donadio
,
G.
Russo
, and
G.
Galli
, “
Homogeneous ice nucleation from supercooled water
,”
Phys. Chem. Chem. Phys.
13
,
19807
(
2011
).
5.
Y.
Bi
,
B.
Cao
, and
T.
Li
, “
Enhanced heterogeneous ice nucleation by special surface geometry
,”
Nat. Commun.
8
,
15372
(
2017
).
6.
E. B.
Moore
and
V.
Molinero
, “
Is it cubic? Ice crystallization from deeply supercooled water
,”
Phys. Chem. Chem. Phys.
13
,
20008
(
2011
).
7.
W. F.
Kuhs
,
C.
Sippel
,
A.
Falenty
, and
T. C.
Hansen
, “
Extent and relevance of stacking disorder in ‘ice Ic’
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
21259
21264
(
2012
).
8.
T. L.
Malkin
,
B. J.
Murray
,
C. G.
Salzmann
,
V.
Molinero
,
S. J.
Pickering
, and
T. F.
Whale
, “
Stacking disorder in ice I
,”
Phys. Chem. Chem. Phys.
17
,
60
76
(
2015
).
9.
L.
Lupi
,
A.
Hudait
,
B.
Peters
,
M.
Grünwald
,
R. G.
Mullen
,
A. H.
Nguyen
, and
V.
Molinero
, “
Role of stacking disorder in ice nucleation
,”
Nature
551
,
218
222
(
2017
).
10.
P. R.
Goswami
,
A. K.
Metya
,
S. V.
Shevkunov
, and
J. K.
Singh
, “
Study of ice nucleation on silver iodide surface with defects
,”
Mol. Phys.
117
,
3651
(
2019
).
11.
L. V.
Woodcock
, “
Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures
,”
Nature
385
,
141
143
(
1997
).
12.
Y. P.
Handa
,
D. D.
Klug
, and
E.
Whalley
, “
Difference in energy between cubic and hexagonal ice
,”
J. Chem. Phys.
84
,
7009
7010
(
1986
).
13.
C. L.
Kelchner
,
S. J.
Plimpton
, and
J. C.
Hamilton
, “
Dislocation nucleation and defect structure during surface indentation
,”
Phys. Rev. B
58
,
11085
11088
(
1998
).
14.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
805
(
1983
).
15.
J. D.
Honeycutt
and
H. C.
Andersen
, “
Molecular dynamics study of melting and freezing of small Lennard-Jones clusters
,”
J. Phys. Chem.
91
,
4950
4963
(
1987
).
16.
G. J.
Ackland
and
A. P.
Jones
, “
Applications of local crystal structure measures in experiment and simulation
,”
Phys. Rev. B
73
,
054104
(
2006
).
17.
A.
Stukowski
, “
Structure identification methods for atomistic simulations of crystalline materials
,”
Modell. Simul. Mater. Sci. Eng.
20
,
045021
(
2012
).
18.
E. A.
Lazar
,
J.
Han
, and
D. J.
Srolovitz
, “
Topological framework for local structure analysis in condensed matter
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
E5769
E5776
(
2015
).
19.
P. M.
Larsen
,
S.
Schmidt
, and
J.
Schiøtz
, “
Robust structural identification via polyhedral template matching
,”
Modell. Simul. Mater. Sci. Eng.
24
,
055007
(
2016
).
20.
W. F.
Reinhart
,
A. W.
Long
,
M. P.
Howard
,
A. L.
Ferguson
, and
A. Z.
Panagiotopoulos
, “
Machine learning for autonomous crystal structure identification
,”
Soft Matter
13
,
4733
4745
(
2017
).
21.
M.
Spellings
and
S. C.
Glotzer
, “
Machine learning for crystal identification and discovery
,”
AIChE J.
64
,
2198
2206
(
2018
).
22.
R. B.
Jadrich
,
B. A.
Lindquist
, and
T. M.
Truskett
, “
Unsupervised machine learning for detection of phase transitions in off-lattice systems. I. Foundations
,”
J. Chem. Phys.
149
,
194109
(
2018
).
23.
M.
Forsblom
and
G.
Grimvall
, “
Homogeneous melting of superheated crystals: Molecular dynamics simulations
,”
Phys. Rev. B
72
,
054107
(
2005
).
24.
M.
de Koning
, “
Crystal imperfections in ice Ih
,”
J. Chem. Phys.
153
,
110902
(
2020
).
25.
T. M.
Truskett
,
S.
Torquato
, and
P. G.
Debenedetti
, “
Towards a quantification of disorder in materials: Distinguishing equilibrium and glassy sphere packings
,”
Phys. Rev. E
62
,
993
1001
(
2000
).
26.
C. G.
Salzmann
,
P. G.
Radaelli
,
B.
Slater
, and
J. L.
Finney
, “
The polymorphism of ice: Five unresolved questions
,”
Phys. Chem. Chem. Phys.
13
,
18468
(
2011
).
27.
C. G.
Salzmann
, “
Advances in the experimental exploration of water’s phase diagram
,”
J. Chem. Phys.
150
,
060901
(
2019
).
28.
J.
Chen
,
G.
Schusteritsch
,
C. J.
Pickard
,
C. G.
Salzmann
, and
A.
Michaelides
, “
Two dimensional ice from first principles: Structures and phase transitions
,”
Phys. Rev. Lett.
116
,
025501
(
2016
).
29.
K.
Koga
,
H.
Tanaka
, and
X. C.
Zeng
, “
First-order transition in confined water between high-density liquid and low-density amorphous phases
,”
Nature
408
,
564
567
(
2000
).
30.
R.
Zangi
and
A. E.
Mark
, “
Monolayer ice
,”
Phys. Rev. Lett.
91
,
025502
(
2003
).
31.
P.
Kumar
,
S. V.
Buldyrev
,
F. W.
Starr
,
N.
Giovambattista
, and
H. E.
Stanley
, “
Thermodynamics, structure, and dynamics of water confined between hydrophobic plates
,”
Phys. Rev. E
72
,
051503
(
2005
).
32.
J.
Bai
and
X. C.
Zeng
, “
Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
21240
21245
(
2012
).
33.
Y.
Zhu
,
F.
Wang
,
J.
Bai
,
X. C.
Zeng
, and
H.
Wu
, “
Compression limit of two-dimensional water constrained in graphene nanocapillaries
,”
ACS Nano
9
,
12197
12204
(
2015
).
34.
Z.
Gao
,
N.
Giovambattista
, and
O.
Sahin
, “
Phase diagram of water confined by graphene
,”
Sci. Rep.
8
,
6228
(
2018
).
35.
C.
Zhu
,
Y.
Gao
,
W.
Zhu
,
Y.
Liu
,
J. S.
Francisco
, and
X. C.
Zeng
, “
Computational prediction of novel ice phases: A perspective
,”
J. Phys. Chem. Lett.
11
,
7449
7461
(
2020
).
36.
A.
Stukowski
and
K.
Albe
, “
Extracting dislocations and non-dislocation crystal defects from atomistic simulation data
,”
Modell. Simul. Mater. Sci. Eng.
18
,
085001
(
2010
).
37.
A.
Haji-Akbari
and
P. G.
Debenedetti
, “
Direct calculation of ice homogeneous nucleation rate for a molecular model of water
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
10582
10588
(
2015
).
38.
B. K. P.
Horn
, “
Closed-form solution of absolute orientation using unit quaternions
,”
J. Opt. Soc. Am. A
4
,
629
(
1987
).
39.
B. K. P.
Horn
,
H. M.
Hilden
, and
S.
Negahdaripour
, “
Closed-form solution of absolute orientation using orthonormal matrices
,”
J. Opt. Soc. Am. A
5
,
1127
(
1988
).
40.
F.
Martelli
,
H.-Y.
Ko
,
E. C.
Oğuz
, and
R.
Car
, “
Local-order metric for condensed-phase environments
,”
Phys. Rev. B
97
,
064105
(
2018
).
41.
A.
Goswami
and
J. K.
Singh
, “
A general topological network criterion for exploring the structure of icy nanoribbons and monolayers
,”
Phys. Chem. Chem. Phys.
22
,
3800
(
2019
).
42.
R.
Goswami
,
A.
Goswami
, and
J. K.
Singh
, “
d-SEAMS: Deferred structural elucidation analysis for molecular simulations
,”
J. Chem. Inf. Model.
60
,
2169
2177
(
2020
).
43.
S. V.
King
, “
Ring configurations in a random network model of vitreous silica
,”
Nature
213
,
1112
1113
(
1967
).
44.
D. S.
Franzblau
, “
Computation of ring statistics for network models of solids
,”
Phys. Rev. B
44
,
4925
4930
(
1991
).
45.
J. A.
Bondy
and
U. S. R.
Murty
,
Graph Theory With Applications
(
MacMillan
,
London
,
1976
).
46.
J. L.
Gross
,
J.
Yellen
, and
M.
Anderson
,
Graph Theory and Its Applications
(
CRC Press
,
2018
).
47.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
48.
V.
Molinero
and
E. B.
Moore
, “
Water modeled as an intermediate element between carbon and silicon†
,”
J. Phys. Chem. B
113
,
4008
4016
(
2009
).
49.
E. B.
Moore
,
E.
de la Llave
,
K.
Welke
,
D. A.
Scherlis
, and
V.
Molinero
, “
Freezing, melting and structure of ice in a hydrophilic nanopore
,”
Phys. Chem. Chem. Phys.
12
,
4124
(
2010
).
50.
E. B.
Moore
and
V.
Molinero
, “
Structural transformation in supercooled water controls the crystallization rate of ice
,”
Nature
479
,
506
508
(
2011
).
51.
E. G.
Solveyra
,
E.
de la Llave
,
D. A.
Scherlis
, and
V.
Molinero
, “
Melting and crystallization of ice in partially filled nanopores
,”
J. Phys. Chem. B
115
,
14196
14204
(
2011
).
52.
J. C.
Johnston
and
V.
Molinero
, “
Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures
,”
J. Am. Chem. Soc.
134
,
6650
6659
(
2012
).
53.
A.
Hudait
,
S.
Qiu
,
L.
Lupi
, and
V.
Molinero
, “
Free energy contributions and structural characterization of stacking disordered ices
,”
Phys. Chem. Chem. Phys.
18
,
9544
9553
(
2016
).
54.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
55.
S.
Gražulis
,
D.
Chateigner
,
R. T.
Downs
,
A. F. T.
Yokochi
,
M.
Quirós
,
L.
Lutterotti
,
E.
Manakova
,
J.
Butkus
,
P.
Moeck
, and
A. L.
Bail
, “
Crystallography open database – an open-access collection of crystal structures
,”
J. Appl. Crystallogr.
42
,
726
729
(
2009
).
56.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
57.
N.
Pingua
and
P. A.
Apte
, “
Topological identification criteria, stability, and relevance of pentagonal nanochannels in amorphous ice
,”
J. Phys. Chem. B
123
,
10301
10310
(
2019
).
58.
E.
Maras
,
O.
Trushin
,
A.
Stukowski
,
T.
Ala-Nissila
, and
H.
Jónsson
, “
Global transition path search for dislocation formation in Ge on Si(001)
,”
Comput. Phys. Commun.
205
,
13
21
(
2016
).
59.
R. L.
McFarlan
, “
The structure of ice II
,”
J. Chem. Phys.
4
,
60
64
(
1936
).
60.
C. M. B.
Line
and
R. W.
Whitworth
, “
A high resolution neutron powder diffraction study of D2O ice XI
,”
J. Chem. Phys.
104
,
10008
10013
(
1996
).

Supplementary Material

You do not currently have access to this content.