When the enhanced electromagnetic field of a confined light mode interacts with photoactive molecules, the system can be driven into the regime of strong coupling, where new hybrid light–matter states, polaritons, are formed. Polaritons, manifested by the Rabi split in the dispersion, have shown potential for controlling the chemistry of the coupled molecules. Here, we show by angle-resolved steady-state experiments accompanied by multi-scale molecular dynamics simulations that the molecular Stokes shift plays a significant role in the relaxation of polaritons formed by organic molecules embedded in a polymer matrix within metallic Fabry–Pérot cavities. Our results suggest that in the case of Rhodamine 6G, a dye with a significant Stokes shift, excitation of the upper polariton leads to a rapid localization of the energy into the fluorescing state of one of the molecules, from where the energy scatters into the lower polariton (radiative pumping), which then emits. In contrast, for excitonic J-aggregates with a negligible Stokes shift, the fluorescing state does not provide an efficient relaxation gateway. Instead, the relaxation is mediated by exchanging energy quanta matching the energy gap between the dark states and lower polariton into vibrational modes (vibrationally assisted scattering). To understand better how the fluorescing state of a molecule that is not strongly coupled to the cavity can transfer its excitation energy to the lower polariton in the radiative pumping mechanism, we performed multi-scale molecular dynamics simulations. The results of these simulations suggest that non-adiabatic couplings between uncoupled molecules and the polaritons are the driving force for this energy transfer process.

1.
R. F.
Ribeiro
,
L. A.
Martínez-Martínez
,
M.
Du
,
J.
Campos-Gonzalez-Angulo
, and
J.
Yuen-Zhou
,
Chem. Sci.
9
,
6325
6339
(
2018
).
2.
J. A.
Hutchison
,
T.
Schwartz
,
C.
Genet
,
E.
Devaux
, and
T. W.
Ebbesen
,
Angew. Chem., Int. Ed.
51
,
1592
1596
(
2012
).
3.
K.
Stranius
,
M.
Herzog
, and
K.
Börjesson
,
Nat. Commun.
9
,
2273
(
2018
).
4.
A.
Thomas
,
J.
George
,
A.
Shalabney
,
M.
Dryzhakov
,
S. J.
Varma
,
J.
Moran
,
T.
Chervy
,
X.
Zhong
,
E.
Devaux
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
,
Angew. Chem., Int. Ed.
55
,
11462
11466
(
2016
).
5.
J.
Lather
,
P.
Bhatt
,
A.
Thomas
,
T. W.
Ebbesen
, and
J.
George
,
Angew. Chem., Int. Ed.
58
,
10635
(
2019
).
6.
R. M. A.
Vergauwe
,
A.
Thomas
,
K.
Nagarajan
,
A.
Shalabney
,
J.
George
,
T.
Chervy
,
M.
Seidel
,
E.
Devaux
,
V.
Torbeev
, and
T. W.
Ebbesen
,
Angew. Chem., Int. Ed.
58
,
15324
15328
(
2019
).
7.
D.
Polak
,
R.
Jayaprakash
,
T. P.
Lyons
,
L. Á.
Martínez-Martínez
,
A.
Leventis
,
K. J.
Fallon
,
H.
Coulthard
,
D. G.
Bossanyi
,
K.
Georgiou
,
A. J.
Petty
 II
,
J.
Anthony
,
H.
Bronstein
,
J.
Yuen-Zhou
,
A. I.
Tartakovskii
,
J.
Clark
, and
A. J.
Musser
,
Chem. Sci.
11
,
343
(
2020
).
8.
B.
Munkhbat
,
M.
Wersäll
,
D. G.
Baranov
,
T. J.
Antosiewicz
, and
T.
Shegai
,
Sci. Adv.
4
,
eaas9552
(
2018
).
9.
V.
Savona
,
L. C.
Andreani
,
P.
Schwendimann
, and
A.
Quattropani
,
Solid State Commun.
93
,
733
739
(
1995
).
10.
P.
Törmä
and
W. L.
Barnes
,
Rep. Prog. Phys.
78
,
013901
(
2015
).
11.
D. G.
Lidzey
,
D. D. C.
Bradley
,
M. S.
Skolnick
,
T.
Virgili
,
S.
Walker
, and
D. M.
Whittaker
,
Nature
395
,
53
55
(
1998
).
12.
D. G.
Lidzey
,
D. D. C.
Bradley
,
T.
Virgili
,
A.
Armitage
,
M. S.
Skolnick
, and
S.
Walker
,
Phys. Rev. Lett.
82
,
3316
3319
(
1999
).
13.
D. G.
Lidzey
and
D. M.
Coles
, “
Strong coupling in organic and hybrid-semiconductor microcavity structures
,” in
Organic and Hybrid Photonic Crystals
, edited by
D.
Comoretto
(
Springer
,
2015
).
14.
V.
Agranovich
,
H.
Benisty
, and
C.
Weisbuch
,
Solid State Commun.
102
,
631
636
(
1997
).
15.
D. G.
Lidzey
,
A. M.
Fox
,
M. D.
Rahn
,
M. S.
Skolnick
,
V. M.
Agranovich
, and
S.
Walker
,
Phys. Rev. B
65
,
195312
(
2002
).
16.
M.
Müller
,
J.
Bleuse
, and
R.
André
,
Phys. Rev. B
62
,
16886
16892
(
2000
).
17.
V. M.
Agranovich
,
M.
Litinskaia
, and
D. G.
Lidzey
,
Phys. Rev. B
67
,
085311
(
2003
).
18.
V. M.
Agranovich
and
G. C.
La Rocca
,
Solid State Commun.
135
,
544
553
(
2005
).
19.
M.
Litinskaya
,
Phys. Lett. A
372
,
3898
3903
(
2008
).
20.
M.
Litinskaya
,
P.
Reineker
, and
V. M.
Agranovich
,
J. Lumin.
110
,
364
372
(
2004
).
21.
D. M.
Coles
,
P.
Michetti
,
C.
Clark
,
A. M.
Adawi
, and
D. G.
Lidzey
,
Phys. Rev. B
84
,
205214
(
2011
).
22.
D. M.
Coles
,
P.
Michetti
,
C.
Clark
,
W. C.
Tsoi
,
A. M.
Adawi
,
J.-S.
Kim
, and
D. G.
Lidzey
,
Adv. Funct. Mater.
21
,
3691
3696
(
2011
).
23.
T.
Schwartz
,
J. A.
Hutchison
,
J.
Léonard
,
C.
Genet
,
S.
Haacke
, and
T. W.
Ebbesen
,
ChemPhysChem
14
,
125
(
2013
).
24.
T.
Virgili
,
D.
Coles
,
A. M.
Adawi
,
C.
Clark
,
P.
Michetti
,
S. K.
Rajendran
,
D.
Brida
,
D.
Polli
,
G.
Cerullo
, and
D. G.
Lidzey
,
Phys. Rev. B
83
,
245309
(
2011
).
25.
S.
Baieva
,
O.
Hakamaa
,
G.
Groenhof
,
T. T.
Heikkilä
, and
J. J.
Toppari
,
ACS Photonics
4
,
28
(
2017
).
26.
N.
Somaschi
,
L.
Mouchliadis
,
D.
Coles
,
I. E.
Perakis
,
D. G.
Lidzey
,
P. G.
Lagoudakis
, and
P. G.
Savvidis
,
Appl. Phys. Lett.
99
,
143303
(
2011
).
27.
G. H.
Lodden
and
R. J.
Holmes
,
Phys. Rev. B
82
,
125317
(
2010
).
28.
G. M.
Akselrod
,
E. R.
Young
,
M. S.
Bradley
, and
V.
Bulović
,
Opt. Express
21
,
12122
(
2013
).
29.
R. T.
Grant
,
P.
Michetti
,
A. J.
Musser
,
P.
Gregoire
,
T.
Virgili
,
E.
Vella
,
M.
Cavazzini
,
K.
Georgiou
,
F.
Galeotti
,
C.
Clark
,
J.
Clark
,
C.
Silva
, and
D. G.
Lidzey
,
Adv. Opt. Mater
4
,
1615
1623
(
2016
).
30.
J. M.
Lüttgens
,
F. J.
Berger
, and
J.
Zaumseil
,
ACS Photonics
8
,
182
193
(
2020
).
31.
H. L.
Luk
,
J.
Feist
,
J. J.
Toppari
, and
G.
Groenhof
,
J. Chem. Theory Comput.
13
,
4324
4335
(
2017
).
32.
G.
Groenhof
,
C.
Climent
,
J.
Feist
,
D.
Morozov
, and
J. J.
Toppari
,
J. Chem. Phys. Lett.
10
,
5476
5483
(
2019
).
33.
G.
Groenhof
and
J. J.
Toppari
,
J. Phys. Chem. Lett.
9
,
4848
(
2018
).
34.
Y.
Duan
,
C.
Wu
,
S.
Chowdhury
,
M. C.
Lee
,
G.
Xiong
,
W.
Zhang
,
R.
Yang
,
P.
Cieplak
,
R.
Luo
,
T.
Lee
,
J.
Caldwell
,
J.
Wang
, and
P.
Kollman
,
J. Comput. Chem.
24
,
1999
2012
(
2003
).
35.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
36.
I. S.
Ufimtsev
and
T. J.
Martinez
,
J. Chem. Theory Comput.
5
,
2619
2628
(
2009
).
37.
A. V.
Titov
,
I. S.
Ufimtsev
,
N.
Luehr
, and
T. J.
Martinez
,
J. Chem. Theory Comput.
9
,
213
221
(
2013
).
38.
T. K.
Hakala
,
J. J.
Toppari
,
A.
Kuzyk
,
M.
Pettersson
,
H.
Tikkanen
,
H.
Kunttu
, and
P.
Törmä
,
Phys. Rev. Lett.
103
,
053602
(
2009
).
39.
M. O.
Faruk
,
N.
Jerop
, and
M. A.
Noginov
,
J. Opt. Soc. Am. B
37
,
3200
(
2020
).
40.
A.
Genco
,
A.
Ridolfo
,
S.
Savasta
,
S.
Patanè
,
G.
Gigli
, and
M.
Mazzeo
,
Adv. Opt. Mater.
6
,
1800362
(
2018
).
41.
M. A.
Koponen
,
U.
Hohenester
,
T. K.
Hakala
, and
J. J.
Toppari
,
Phys. Rev. B
88
,
085425
(
2013
).
42.
J.
George
 et al,
Faraday Discuss.
178
,
281
(
2015
).
43.
D. M.
Coles
,
A. J. H. M.
Meijer
,
W. C.
Tsoi
,
M. D. B.
Charlton
,
J.-S.
Kim
, and
D. G.
Lidzey
,
J. Phys. Chem. A
114
,
11920
11927
(
2010
).
44.
P. A.
Hobson
,
W. L.
Barnes
,
D. G.
Lidzey
,
G. A.
Gehring
,
D. M.
Whittaker
,
M. S.
Skolnick
, and
S.
Walker
,
Appl. Phys. Lett.
81
,
3519
3521
(
2002
).
45.
R. H.
Tichauer
,
J.
Feist
, and
G.
Groenhof
,
J. Chem. Phys.
154
,
104112
(
2021
).
46.
A. I.
Tartakovskii
,
M.
Emam-Ismail
,
D. G.
Lidzey
,
M. S.
Skolnick
,
D. D. C.
Bradley
,
S.
Walker
, and
V. M.
Agranovich
,
Phys. Rev. B
63
,
121302
(
2001
).
47.
S.
Kéna-Cohen
and
S. R.
Forrest
,
Nat. Photonics
4
,
371
375
(
2010
).
48.
T. W.
Ebbesen
,
Acc. Chem. Res.
49
,
2403
2412
(
2016
).

Supplementary Material

You do not currently have access to this content.