We present an efficient method to simulate two-dimensional (2D) electronic spectra of condensed-phase systems with an emphasis on treating quantum nuclear wave packet dynamics explicitly. To this end, we combine a quantum Langevin equation (QLE) approach for dissipation and a perturbative scheme to calculate three-pulse photon-echo polarizations based on wave packet dynamics under the influence of external fields. The proposed dynamical approach provides a consistent description of nuclear quantum dynamics, pulse-overlap effects, and vibrational relaxation, enabling simulations of 2D electronic spectra with explicit and non-perturbative treatment of coupled electronic–nuclear dynamics. We apply the method to simulate 2D electronic spectra of a displaced-oscillator model in the condensed phase and discuss the spectral and temporal evolutions of 2D signals. Our results show that the proposed QLE approach is capable of describing vibrational relaxation, decoherence, and vibrational coherence transfer, as well as their manifestations in spectroscopic signals. Furthermore, vibrational quantum beats specific for excited-state vs ground-state nuclear wave packet dynamics can also be identified. We anticipate that this method will provide a useful tool to conduct theoretical studies of 2D spectroscopy for strong vibronically coupled systems and to elucidate intricate vibronic couplings in complex molecular systems.

1.
J. D.
Hybl
,
A.
Albrecht Ferro
, and
D. M.
Jonas
, “
Two-dimensional Fourier transform electronic spectroscopy
,”
J. Chem. Phys.
115
,
6606
6622
(
2001
).
2.
W. M.
Zhang
,
V.
Chernyak
, and
S.
Mukamel
, “
Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitons
,”
J. Chem. Phys.
110
,
5011
5028
(
1999
).
3.
M.
Cho
, “
Coherent two-dimensional optical spectroscopy
,”
Chem. Rev.
108
,
1331
1418
(
2008
).
4.
N. S.
Ginsberg
,
Y.-C.
Cheng
, and
G. R.
Fleming
, “
Two-dimensional electronic spectroscopy of molecular aggregates
,”
Acc. Chem. Res.
42
,
1352
1363
(
2009
).
5.
F. D.
Fuller
and
J. P.
Ogilvie
, “
Experimental implementations of two-dimensional Fourier transform electronic spectroscopy
,”
Annu. Rev. Phys. Chem.
66
,
667
690
(
2015
).
6.
M. K.
Petti
,
J. P.
Lomont
,
M.
Maj
, and
M. T.
Zanni
, “
Two-dimensional spectroscopy is being used to address core scientific questions in biology and materials science
,”
J. Phys. Chem. B
122
,
1771
1780
(
2018
).
7.
D. M.
Jonas
, “
Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn–Teller effect, and energy transfer
,”
Annu. Rev. Phys. Chem.
69
,
327
352
(
2018
).
8.
T. A. A.
Oliver
, “
Recent advances in multidimensional ultrafast spectroscopy
,”
R. Soc. Open Sci.
5
,
171425
(
2018
).
9.
A.
Gelzinis
,
R.
Augulis
,
V.
Butkus
,
B.
Robert
, and
L.
Valkunas
, “
Two-dimensional spectroscopy for non-specialists
,”
Biochim. Biophys. Acta, Bioenerg.
1860
,
271
285
(
2019
).
10.
L.
Wang
,
M. A.
Allodi
, and
G. S.
Engel
, “
Quantum coherences reveal excited-state dynamics in biophysical systems
,”
Nat. Rev. Chem.
3
,
477
490
(
2019
).
11.
F.
Milota
,
J.
Sperling
,
A.
Nemeth
,
T.
Mančal
, and
H. F.
Kauffmann
, “
Two-dimensional electronic spectroscopy of molecular excitons
,”
Acc. Chem. Res.
42
,
1364
1374
(
2009
).
12.
F.
Milota
,
V. I.
Prokhorenko
,
T.
Mancal
,
H.
von Berlepsch
,
O.
Bixner
,
H. F.
Kauffmann
, and
J.
Hauer
, “
Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates
,”
J. Phys. Chem. A
117
,
6007
6014
(
2013
).
13.
C. L.
Smallwood
and
S. T.
Cundiff
, “
Multidimensional coherent spectroscopy of semiconductors
,”
Laser Photonics Rev.
12
,
1800171
(
2018
).
14.
P.
Nuernberger
,
S.
Ruetzel
, and
T.
Brixner
, “
Multidimensional electronic spectroscopy of photochemical reactions
,”
Angew. Chem., Int. Ed.
54
,
11368
11386
(
2015
).
15.
F.
Fassioli
,
R.
Dinshaw
,
P. C.
Arpin
, and
G. D.
Scholes
, “
Photosynthetic light harvesting: Excitons and coherence
,”
J. R. Soc. Interface
11
,
20130901
(
2014
).
16.
A.
Chenu
and
G. D.
Scholes
, “
Coherence in energy transfer and photosynthesis
,”
Annu. Rev. Phys. Chem.
66
,
69
96
(
2015
).
17.
J. C.
Dean
and
G. D.
Scholes
, “
Coherence spectroscopy in the condensed phase: Insights into molecular structure, environment, and interactions
,”
Acc. Chem. Res.
50
,
2746
2755
(
2017
).
18.
M. K.
Lee
,
P.
Huo
, and
D. F.
Coker
, “
Semiclassical path integral dynamics: Photosynthetic energy transfer with realistic environment interactions
,”
Annu. Rev. Phys. Chem.
67
,
639
668
(
2016
).
19.
F.
Ma
,
E.
Romero
,
M. R.
Jones
,
V. I.
Novoderezhkin
, and
R.
van Grondelle
, “
Vibronic coherence in the charge separation process of the Rhodobacter sphaeroides reaction center
,”
J. Phys. Chem. Lett.
9
,
1827
1832
(
2018
).
20.
E.
Thyrhaug
,
R.
Tempelaar
,
M. J. P.
Alcocer
,
K.
Žídek
,
D.
Bína
,
J.
Knoester
,
T. L. C.
Jansen
, and
D.
Zigmantas
, “
Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex
,”
Nat. Chem.
10
,
780
786
(
2018
).
21.
S.
Rafiq
,
B.
Fu
,
K.
Bryan
, and
G. D.
Scholes
, “
Interplay of vibrational wavepackets during an ultrafast electron transfer reaction
,”
Nat. Chem.
13
,
70
(
2020
).
22.
E. A.
Arsenault
,
Y.
Yoneda
,
M.
Iwai
,
K. K.
Niyogi
, and
G. R.
Fleming
, “
Vibronic mixing enables ultrafast energy flow in light-harvesting complex II
,”
Nat. Commun.
11
,
1460
(
2020
).
23.
T. A. A.
Oliver
,
N. H. C.
Lewis
, and
G. R.
Fleming
, “
Correlating the motion of electrons and nuclei with two-dimensional electronic–vibrational spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
10061
10066
(
2014
).
24.
F.
Terenziani
and
A.
Painelli
, “
Two-dimensional electronic-vibrational spectra: Modeling correlated electronic and nuclear motion
,”
Phys. Chem. Chem. Phys.
17
,
13074
13081
(
2015
).
25.
J. D.
Gaynor
and
M.
Khalil
, “
Signatures of vibronic coupling in two-dimensional electronic-vibrational and vibrational-electronic spectroscopies
,”
J. Chem. Phys.
147
,
094202
(
2017
).
26.
P.
Bhattacharyya
and
G. R.
Fleming
, “
Two-dimensional electronic–vibrational spectroscopy of coupled molecular complexes: A near-analytical approach
,”
J. Phys. Chem. Lett.
10
,
2081
2089
(
2019
).
27.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
), Vol. 6.
28.
L.
Chen
,
R.
Zheng
,
Q.
Shi
, and
Y.
Yan
, “
Two-dimensional electronic spectra from the hierarchical equations of motion method: Application to model dimers
,”
J. Chem. Phys.
132
,
024505
(
2010
).
29.
L.
Chen
,
R.
Zheng
,
Y.
Jing
, and
Q.
Shi
, “
Simulation of the two-dimensional electronic spectra of the Fenna–Matthews–Olson complex using the hierarchical equations of motion method
,”
J. Chem. Phys.
134
,
194508
(
2011
).
30.
A.
Ishizaki
and
G. R.
Fleming
, “
Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach
,”
J. Chem. Phys.
130
,
234111
(
2009
).
31.
D.
Paleček
,
P.
Edlund
,
E.
Gustavsson
,
S.
Westenhoff
, and
D.
Zigmantas
, “
Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
151
,
024201
(
2019
).
32.
X.
Leng
,
S.
Yue
,
Y.-X.
Weng
,
K.
Song
, and
Q.
Shi
, “
Effects of finite laser pulse width on two-dimensional electronic spectroscopy
,”
Chem. Phys. Lett.
667
,
79
86
(
2017
).
33.
L.
Seidner
,
G.
Stock
, and
W.
Domcke
, “
Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes
,”
J. Chem. Phys.
103
,
3998
4011
(
1995
).
34.
T.
Mančal
,
A. V.
Pisliakov
, and
G. R.
Fleming
, “
Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra
,”
J. Chem. Phys.
124
,
234504
(
2006
).
35.
P.
Kjellberg
and
T.
Pullerits
, “
Three-pulse photon echo of an excitonic dimer modeled via Redfield theory
,”
J. Chem. Phys.
124
,
024106
(
2006
).
36.
A.
Ishizaki
and
Y.
Tanimura
, “
Nonperturbative non-Markovian quantum master equation: Validity and limitation to calculate nonlinear response functions
,”
Chem. Phys.
347
,
185
193
(
2008
).
37.
M. F.
Gelin
,
D.
Egorova
, and
W.
Domcke
, “
Efficient method for the calculation of time- and frequency-resolved four-wave mixing signals and its application to photon-echo spectroscopy
,”
J. Chem. Phys.
123
,
164112
(
2005
).
38.
D.
Egorova
,
M. F.
Gelin
, and
W.
Domcke
, “
Analysis of cross peaks in two-dimensional electronic photon-echo spectroscopy for simple models with vibrations and dissipation
,”
J. Chem. Phys.
126
,
074314
(
2007
).
39.
Y.-C.
Cheng
,
H.
Lee
, and
G. R.
Fleming
, “
Efficient simulation of three-pulse photon-echo signals with application to the determination of electronic coupling in a bacterial photosynthetic reaction center
,”
J. Phys. Chem. A
111
,
9499
9508
(
2007
).
40.
Y.-C.
Cheng
,
G. S.
Engel
, and
G. R.
Fleming
, “
Elucidation of population and coherence dynamics using cross-peaks in two-dimensional electronic spectroscopy
,”
Chem. Phys.
341
,
285
295
(
2007
).
41.
Y.-C.
Cheng
and
G. R.
Fleming
, “
Coherence quantum beats in two-dimensional electronic spectroscopy
,”
J. Phys. Chem. A
112
,
4254
4260
(
2008
).
42.
X.
Leng
,
Y.-M.
Yan
,
R.-D.
Zhu
,
K.
Song
,
Y.-X.
Weng
, and
Q.
Shi
, “
Simulation of the two-dimensional electronic spectroscopy and energy transfer dynamics of light-harvesting complex II at ambient temperature
,”
J. Phys. Chem. B
122
,
4642
4652
(
2018
).
43.
X.
Leng
,
T. N.
Do
,
P.
Akhtar
,
H. L.
Nguyen
,
P. H.
Lambrev
, and
H.-S.
Tan
, “
Hierarchical equations of motion simulation of temperature-dependent two-dimensional electronic spectroscopy of the chlorophyll a manifold in LHCII
,”
Chem. - Asian J.
15
,
1996
2004
(
2020
).
44.
J.
Krčmář
,
M. F.
Gelin
, and
W.
Domcke
, “
Calculation of third-order signals via driven Schrödinger equations: General results and application to electronic 2D photon echo spectroscopy
,”
Chem. Phys.
422
,
53
62
(
2013
).
45.
J.
Wehner
,
M.
Falge
,
W. T.
Strunz
, and
V.
Engel
, “
Quantum diffusion wave-function approach to two-dimensional vibronic spectroscopy
,”
J. Chem. Phys.
141
,
134306
(
2014
).
46.
J.
Albert
,
M.
Falge
,
M.
Keß
,
J. G.
Wehner
,
P.-P.
Zhang
,
A.
Eisfeld
, and
V.
Engel
, “
Extended quantum jump description of vibronic two-dimensional spectroscopy
,”
J. Chem. Phys.
142
,
212440
(
2015
).
47.
J. M.
Jackson
,
P. L.
Brucia
, and
M.
Messina
, “
An approach towards a simple quantum Langevin equation
,”
Chem. Phys. Lett.
511
,
471
481
(
2011
).
48.
P. A.
Brown
and
M.
Messina
, “
Including memory friction in single- and two-state quantum dynamics simulations
,”
J. Phys. Chem. B
120
,
1461
1475
(
2016
).
49.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
1992
), Vol. 1.
50.
H.-P.
Breuer
,
F.
Petruccione
 et al,
The Theory of Open Quantum Systems
(
Oxford University Press on Demand
,
2002
).
51.
E. J.
Heller
, “
Time-dependent approach to semiclassical dynamics
,”
J. Chem. Phys.
62
,
1544
1555
(
1975
).
52.
E. J.
Heller
, “
Classical S-matrix limit of wave packet dynamics
,”
J. Chem. Phys.
65
,
4979
4989
(
1976
).
53.
G. W.
Ford
,
J. T.
Lewis
, and
R. F.
O’Connell
, “
Quantum Langevin equation
,”
Phys. Rev. A
37
,
4419
4428
(
1988
).
54.
R.
Katz
and
P. B.
Gossiaux
, “
The Schrodinger–Langevin equation with and without thermal fluctuations
,”
Ann. Phys.
368
,
267
295
(
2016
).
55.
H.
Peter
and
G.-L.
Ingold
, “
Fundamental aspects of quantum Brownian motion
,”
Chaos
15
(
2
),
026105
(
2005
).
56.
G. W.
Ford
,
J. T.
Lewis
, and
R. F.
O’Connell
, “
Independent oscillator model of a heat bath: Exact diagonalization of the Hamiltonian
,”
J. Stat. Phys.
53
,
439
455
(
1988
).
57.
J. M.
Moix
and
J.
Cao
, “
A hybrid stochastic hierarchy equations of motion approach to treat the low temperature dynamics of non-Markovian open quantum systems
,”
J. Chem. Phys.
139
,
134106
(
2013
).
58.
X.
Zhong
,
Y.
Zhao
, and
J.
Cao
, “
Coherent quantum transport in disordered systems: II. Temperature dependence of carrier diffusion coefficients from the time-dependent wavepacket diffusion method
,”
New J. Phys.
16
,
045009
(
2014
).
59.
Y.
Yan
,
Y.
Liu
,
T.
Xing
, and
Q.
Shi
, “
Theoretical study of excitation energy transfer and nonlinear spectroscopy of photosynthetic light-harvesting complexes using the nonperturbative reduced dynamics method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1498
(
2020
).
60.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
, “
The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets
,”
Phys. Rep.
324
,
1
105
(
2000
).
61.
J. C.
Light
and
T.
Carrington
, Jr.
, “
Discrete-variable representations and their utilization
,”
Adv. Chem. Phys.
114
,
263
310
(
2000
).
You do not currently have access to this content.