Charged hydrogels are capable of swelling in aqueous salt solutions, whereby part of the salt ions is repelled due to the presence of fixed charged groups inside the hydrogel. This effect creates a concentration gradient between the absorbed solution and the surrounding fluid known as salt partitioning, offering a potential for these materials to be employed to desalinate saltwater. If the charged hydrogels are thermo-sensitive as well, then the purer, absorbed solution can be recovered by shrinking the hydrogels upon temperature change. To tailor that potential in water-purification and desalination applications, the main parameters influencing the salt partitioning, the deswelling of the hydrogels, and the recovery of water must be understood. In this paper, we analyze these factors based on equations derived from the Donnan theory. In addition, hydrogels composed of N-isopropyl acrylamide and acrylic acid are synthesized, and their salt rejection efficiency in a model desalination experiment is studied. A comparison of the experimental and the theoretical results demonstrates that the charge density of the hydrogels at their equilibrium swelling and the degree of water recovery are two parameters controlling the salt rejection efficiency. These parameters are individually controlled by the content of the ionic groups and the degree of cross-linking of the gel polymer network. In addition, the prediction of the theory and the experimental results demonstrate that the salt rejection efficiency can be significantly improved if a second water recovery step is performed by a secondary increase in the temperature in the deswelling process.

1.
M.
Elimelech
and
W. A.
Phillip
, “
The future of seawater desalination: Energy, technology, and the environment
,”
Science
333
,
712
717
(
2011
).
2.
J.
Kucera
, “
Introduction to desalination
,” in
Desalination: Water from Water
(
Scrivener Publishing LLC
,
2014
), pp.
1
37
.
3.
S. W.
Sharshir
,
A. M.
Algazzar
,
K. A.
Elmaadawy
,
A. W.
Kandeal
,
M. R.
Elkadeem
,
T.
Arunkumar
,
J.
Zang
, and
N.
Yang
, “
New hydrogel materials for improving solar water evaporation, desalination and wastewater treatment: A review
,”
Desalination
491
,
114564
(
2020
).
4.
X.
Zhou
,
Y.
Guo
,
F.
Zhao
, and
G.
Yu
, “
Hydrogels as an emerging material platform for solar water purification
,”
Acc. Chem. Res.
52
,
3244
3253
(
2019
).
5.
H.
Geng
,
Q.
Xu
,
M.
Wu
,
H.
Ma
,
P.
Zhang
,
T.
Gao
,
L.
Qu
,
T.
Ma
, and
C.
Li
, “
Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production
,”
Nat. Commun.
10
,
1
10
(
2019
).
6.
F.
Zhu
,
L.
Wang
,
B.
Demir
,
M.
An
,
Z. L.
Wu
,
J.
Yin
,
R.
Xiao
,
Q.
Zheng
, and
J.
Qian
, “
Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels
,”
Mater. Horizon.
7
,
3187
3195
(
2020
).
7.
S.
Zhao
,
L.
Zou
,
C. Y.
Tang
, and
D.
Mulcahy
, “
Recent developments in forward osmosis: Opportunities and challenges
,”
J. Membr. Sci.
396
,
1
21
(
2012
).
8.
T.
Cath
,
A.
Childress
, and
M.
Elimelech
, “
Forward osmosis: Principles, applications, and recent developments
,”
J. Membr. Sci.
281
,
70
87
(
2006
).
9.
M. J.
Zohuriaan Mehr
and
K.
Kabiri
, “
Superabsorbent polymer materials: A review
,”
Iran. Polym. J.
17
,
451
477
(
2008
).
10.
P. J.
Flory
,
Principles of Polymer Chemistry
(
Cornell University Press
,
1953
).
11.
F.
Donnan
and
E.
Guggenheim
, “
Die genaue thermodynamik der membrangleichgewichte
,”
Z. Physik. Chem.
162A
,
346
360
(
1932
).
12.
A.
Katchalsky
and
I.
Michaeli
, “
Polyelectrolyte gels in salt solutions
,”
J. Polym. Sci.
15
,
69
86
(
1955
).
13.
J.
Ricka
and
T.
Tanaka
, “
Swelling of ionic gels: Quantitative performance of the Donnan theory
,”
Macromolecules
17
,
2916
2921
(
1984
).
14.
J.
Höpfner
,
C.
Klein
, and
M.
Wilhelm
, “
A novel approach for the desalination of seawater by means of reusable poly(acrylic acid) hydrogels and mechanical force
,”
Macromol. Rapid Commun.
31
,
1337
1342
(
2010
).
15.
J.
Höpfner
,
T.
Richter
,
P.
Košovan
,
C.
Holm
, and
M.
Wilhelm
, “
Seawater desalination via hydrogels: Practical realisation and first coarse grained simulations
,” in
Intelligent Hydrogels
(
Springer
,
2013
), pp.
247
263
.
16.
L.
Arens
,
J. B.
Albrecht
,
J.
Höpfner
,
K.
Schlag
,
A.
Habicht
,
S.
Seiffert
, and
M.
Wilhelm
, “
Energy consumption for the desalination of salt water using polyelectrolyte hydrogels as the separation agent
,”
Macromol. Chem. Phys.
218
,
1700237
(
2017
).
17.
L.
Arens
,
D.
Barther
,
J.
Landsgesell
,
C.
Holm
, and
M.
Wilhelm
, “
Poly(sodium acrylate) hydrogels: Synthesis of various network architectures, local molecular dynamics, salt partitioning, desalination and simulation
,”
Soft Matter
15
,
9949
9964
(
2019
).
18.
C.
Fengler
,
L.
Arens
,
H.
Horn
, and
M.
Wilhelm
, “
Desalination of seawater using cationic poly(acrylamide) hydrogels and mechanical forces for separation
,”
Macromol. Mater. Eng.
305
,
2000383
(
2020
).
19.
T.
Richter
,
J.
Landsgesell
,
P.
Košovan
, and
C.
Holm
, “
On the efficiency of a hydrogel-based desalination cycle
,”
Desalination
414
,
28
34
(
2017
).
20.
O.
Rud
,
O.
Borisov
, and
P.
Košovan
, “
Thermodynamic model for a reversible desalination cycle using weak polyelectrolyte hydrogels
,”
Desalination
442
,
32
43
(
2018
).
21.
C.
Yu
,
Y.
Wang
,
X.
Lang
, and
S.
Fan
, “
A method for seawater desalination via squeezing ionic hydrogels
,”
Environm. Sci. Technol.
50
,
13024
13031
(
2016
).
22.
D.
Li
,
X.
Zhang
,
G. P.
Simon
, and
H.
Wang
, “
Forward osmosis desalination using polymer hydrogels as a draw agent: Influence of draw agent, feed solution and membrane on process performance
,”
Water Res.
47
,
209
215
(
2013
).
23.
A.
Razmjou
,
M. R.
Barati
,
G. P.
Simon
,
K.
Suzuki
, and
H.
Wang
, “
Fast deswelling of nanocomposite polymer hydrogels via magnetic field-induced heating for emerging FO desalination
,”
Environ. Sci. Technol
47
,
6297
6305
(
2013
).
24.
H. G.
Schild
, “
Poly(N-isopropylacrylamide): Experiment, theory and application
,”
Prog. Polym. Sci.
17
,
163
249
(
1992
).
25.
M.
Heskins
and
J. E.
Guillet
, “
Solution properties of poly(N-isopropylacrylamide)
,”
J. Macromol. Sci. Chem.
2
,
1441
1455
(
1968
).
26.
S.
Hirotsu
,
Y.
Hirokawa
, and
T.
Tanaka
, “
Volume-phase transitions of ionized N-isopropylacrylamide gels
,”
J. Chem. Phys.
87
,
1392
1395
(
1987
).
27.
Y.
Hirose
,
T.
Amiya
,
Y.
Hirokawa
, and
T.
Tanaka
, “
Phase transition of submicron gel beads
,”
Macromolecules
20
,
1342
1344
(
1987
).
28.
M.
Shibayama
,
T.
Tanaka
, and
C. C.
Han
, “
Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition temperature
,”
J. Chem. Phys.
97
,
6829
6841
(
1992
).
29.
D.
Li
,
X.
Zhang
,
J.
Yao
,
Y.
Zeng
,
G. P.
Simon
, and
H.
Wang
, “
Composite polymer hydrogels as draw agents in forward osmosis and solar dewatering
,”
Soft Matter
7
,
10048
10056
(
2011
).
30.
Y.
Zeng
,
L.
Qiu
,
K.
Wang
,
J.
Yao
,
D.
Li
,
G. P.
Simon
,
R.
Wang
, and
H.
Wang
, “
Significantly enhanced water flux in forward osmosis desalination with polymer-graphene composite hydrogels as a draw agent
,”
RSC Adv.
3
,
887
894
(
2013
).
31.
Y.
Cai
,
W.
Shen
,
S. L.
Loo
,
W. B.
Krantz
,
R.
Wang
,
A. G.
Fane
, and
X.
Hu
, “
Towards temperature driven forward osmosis desalination using semi-IPN hydrogels as reversible draw agents
,”
Water Res.
47
,
3773
3781
(
2013
).
32.
A.
Razmjou
,
Q.
Liu
,
G. P.
Simon
, and
H.
Wang
, “
Bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy
,”
Environ. Sci. Technol.
47
,
13160
13166
(
2013
).
33.
W.
Ali
,
B.
Gebert
,
T.
Hennecke
,
K.
Graf
,
M.
Ulbricht
, and
J. S.
Gutmann
, “
Design of thermally responsive polymeric hydrogels for brackish water desalination: Effect of architecture on swelling, deswelling, and salt rejection
,”
ACS. Appl. Mater. Interfaces
7
,
15696
15706
(
2015
).
34.
W.
Ali
,
B.
Gebert
,
S.
Altinpinar
,
T.
Mayer-Gall
,
M.
Ulbricht
,
J.
Gutmann
, and
K.
Graf
, “
On the potential of using dual-function hydrogels for brackish water desalination
,”
Polymers
10
,
567
(
2018
).
35.
M.
Quesada-Pérez
,
S.
Ahualli
, and
A.
Martín-Molina
, “
Thermo-responsive gels in the presence of monovalent salt at physiological concentrations: A Monte Carlo simulation study
,”
J. Polym. Sci., Part B: Polym. Phys.
52
,
1403
1411
(
2014
).
36.
P.
Košovan
,
T.
Richter
, and
C.
Holm
, “
Modeling of polyelectrolyte gels in equilibrium with salt solutions
,”
Macromolecules
48
,
7698
7708
(
2015
).
37.
S.
Edgecombe
,
S.
Schneider
, and
P.
Linse
, “
Monte Carlo simulations of defect-free cross-linked gels in the presence of salt
,”
Macromolecules
37
,
10089
10100
(
2004
).
38.
S.
Beltran
,
J. P.
Baker
,
H. H.
Hooper
,
H. W.
Blanch
, and
J. M.
Prausnitz
, “
Swelling equilibria for weakly ionizable, temperature-sensitive hydrogels
,”
Macromolecules
24
,
549
551
(
1991
).
39.
Y.
Liu
,
J. L.
Velada
, and
M. B.
Huglin
, “
Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with sodium acrylate and sodium methacrylate
,”
Polymer
40
,
4299
4306
(
1999
).
40.
H.
Yu
and
D. W.
Grainger
, “
Thermo-sensitive swelling behavior in crosslinked N-isopropylacrylamide networks: Cationic, anionic, and ampholytic hydrogels
,”
J. Appl. Polym. Sci.
49
,
1553
1563
(
1993
).
41.
J.
Landsgesell
,
P.
Hebbeker
,
O.
Rud
,
R.
Lunkad
,
P.
Košovan
, and
C.
Holm
, “
Grand-reaction method for simulations of ionization equilibria coupled to ion partitioning
,”
Macromolecules
53
,
3007
3020
(
2020
).
42.
J.
Höpfner
,
A New Method of Seawater Desalination via Acrylic Acid Based Hydrogels: Synthesis, Characterisation, and Experimental Realisation
(
KIT Scientific Publishing
,
2014
).
43.
O.
Okay
and
S. B.
Sariisik
, “
Swelling behavior of poly(acrylamide-co-sodium acrylate) hydrogels in aqueous salt solutions: Theory versus experiments
,”
Eur. Polym. J.
36
,
393
399
(
2000
).

Supplementary Material

You do not currently have access to this content.