We measure the isothermal crystallization kinetics of amorphous acetonitrile films using molecular beam dosing and reflection adsorption infrared spectroscopy techniques. Experiments on a graphene covered Pt(111) substrate revealed that the crystallization rate slows dramatically during long time periods and that the overall kinetics cannot be described by a simple application of the Avrami equation. The crystallization kinetics also have a thickness dependence with the thinner films crystallizing much slower than the thicker ones. Additional experiments showed that decane layers at both the substrate and vacuum interfaces can also affect the crystallization rates. A comparison of the crystallization rates for CH3CN and CD3CN films showed only an isotope effect of ∼1.09. When amorphous films were deposited on a crystalline film, the crystalline layer did not act as a template for the formation of a crystalline growth front. These overall results suggest that the crystallization kinetics are complicated, indicating the possibility of multiple nucleation and growth mechanisms.

1.
I.
Villegas
and
M. J.
Weaver
, “
Progressive cation solvation at Pt(111) model electrochemical interfaces in ultrahigh vacuum as probed by infrared spectroscopy and work-function measurements
,”
Electrochim. Acta
41
,
661
(
1996
).
2.
S.
Baldelli
,
G.
Mailhot
,
P.
Ross
,
Y.-R.
Shen
, and
G. A.
Somorjai
, “
Potential dependent orientation of acetonitrile on platinum (111) electrode surface studied by sum frequency generation
,”
J. Phys. Chem. B
105
,
654
(
2001
).
3.
S. B.
Waldrup
and
C. T.
Williams
, “
Acetonitrile adsorption on polycrystalline platinum: An in situ investigation using sum frequency spectroscopy
,”
J. Phys. Chem. C
112
,
219
(
2008
).
4.
G.
Feng
,
J.
Huang
,
B. G.
Sumpter
,
V.
Meunier
, and
R.
Qiao
, “
Structure and dynamics of electrical double layers in organic electrolytes
,”
Phys. Chem. Chem. Phys.
12
,
5468
(
2010
).
5.
G. H.
Lane
and
E.
Jezek
, “
Electrochemical studies of acetonitrile based supercapacitor electrolytes containing alkali and alkaline earth metal cations
,”
Electrochim. Acta
150
,
173
(
2014
).
6.
Y.
Yamada
,
K.
Furukawa
,
K.
Sodeyama
,
K.
Kikuchi
,
M.
Yaegashi
,
Y.
Tateyama
, and
A.
Yamada
, “
Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries
,”
J. Am. Chem. Soc.
136
,
5039
(
2014
).
7.
S. V.
Pavlov
and
S. A.
Kislenko
, “
Effects of carbon surface topography on the electrode/electrolyte interface structure and relevance to Li–air batteries
,”
Phys. Chem. Chem. Phys.
18
,
30830
(
2016
).
8.
S.
Zhang
,
Z.
Bo
,
H.
Yang
,
J.
Yang
,
L.
Duan
,
J.
Yan
, and
K.
Cen
, “
Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes
,”
J. Power Sources
334
,
162
(
2016
).
9.
I. A.
Pašti
,
A.
Marković
,
N.
Gavrilov
, and
S. V.
Mentus
, “
Adsorption of acetonitrile on platinum and its effects on oxygen reduction reaction in acidic aqueous solutions—combined theoretical and experimental study
,”
Electrocatalysis
7
,
235
(
2016
).
10.
P. M.
Solomon
,
K. B.
Jefferts
,
A. A.
Penzias
, and
R. W.
Wilson
, “
Detection of millimeter emission lines from interstellar methyl cyanide
,”
Astrophys. J.
168
,
L107
(
1971
).
11.
J.
Kissel
and
F. R.
Krueger
, “
The organic-component in dust from comet Halley as measured by the puma mass-spectrometer on board Vega-1
,”
Nature
326
,
755
(
1987
).
12.
L.
Olmi
,
R.
Cesaroni
, and
C. M.
Walmsley
, “
Ammonia and methyl cyanide in hot cores
,”
Astron. Astrophys.
276
,
489
(
1993
).
13.
L. M.
Lara
,
E.
Lellouch
,
J. J.
López-Moreno
, and
R.
Rodrigo
, “
Vertical distribution of titan’s atmospheric neutral constituents
,”
J. Geophys. Res.: Planets
101
,
23261
, (
1996
).
14.
A.
Marten
,
T.
Hidayat
,
Y.
Biraud
, and
R.
Moreno
, “
New millimeter heterodyne observations of titan: Vertical distributions of nitriles HCN, HC3N, CH3CN, and the isotopic ratio 15N/14N in its atmosphere
,”
Icarus
158
,
532
(
2002
).
15.
M. F.
A’Hearn
,
M. J. S.
Belton
,
W. A.
Delamere
,
J.
Kissel
,
K. P.
Klaasen
,
L. A.
McFadden
,
K. J.
Meech
,
H. J.
Melosh
,
P. H.
Schultz
,
J. M.
Sunshine
,
P. C.
Thomas
,
J.
Veverka
,
D. K.
Yeomans
,
M. W.
Baca
,
I.
Busko
,
C. J.
Crockett
,
S. M.
Collins
,
M.
Desnoyer
,
C. A.
Eberhardy
,
C. M.
Ernst
,
T. L.
Farnham
,
L.
Feaga
,
O.
Groussin
,
D.
Hampton
,
S. I.
Ipatov
,
J.-Y.
Li
,
D.
Lindler
,
C. M.
Lisse
,
N.
Mastrodemos
,
W. M.
Owen
,
J. E.
Richardson
,
D. D.
Wellnitz
, and
R. L.
White
, “
Deep impact: Excavating comet Tempel 1
,”
Science
310
,
258
(
2005
).
16.
N.
Fray
and
B.
Schmitt
, “
Sublimation of ices of astrophysical interest: A bibliographic review
,”
Planet Space Sci.
57
,
2053
(
2009
).
17.
E. L.
Barth
, “
Modeling survey of ices in titan’s stratosphere
,”
Planet Space Sci.
137
,
20
(
2017
).
18.
R. L.
Hudson
, “
Preparation, identification, and low-temperature infrared spectra of two elusive crystalline nitrile ices
,”
Icarus
338
,
113548
(
2020
).
19.
L. J.
Allamandola
,
M. P.
Bernstein
,
S. A.
Sandford
, and
R. L.
Walker
, “
Evolution of interstellar ices
,”
Space Sci. Rev.
90
,
219
(
1999
).
20.
M. H.
Moore
,
R. F.
Ferrante
,
W.
James Moore
, and
R.
Hudson
, “
Infrared spectra and optical constants of nitrile ices relevant to titan’s atmosphere
,”
Astrophys. J., Suppl. Ser.
191
,
96
(
2010
).
21.
R. L.
Hudson
,
R. F.
Ferrante
, and
M. H.
Moore
, “
Infrared spectra and optical constants of astronomical ices: I. Amorphous and crystalline acetylene
,”
Icarus
228
,
276
(
2014
).
22.
R. L.
Hudson
,
P. A.
Gerakines
, and
M. H.
Moore
, “
Infrared spectra and optical constants of astronomical ices: II. Ethane and ethylene
,”
Icarus
243
,
148
(
2014
).
23.
M.
Tylinski
,
R. S.
Smith
, and
B. D.
Kay
, “
Structure and desorption kinetics of acetonitrile thin films on Pt(111) and on graphene on Pt(111)
,”
J. Phys. Chem. C
124
,
2521
(
2020
).
24.
M.
Tylinski
,
R. S.
Smith
, and
B. D.
Kay
, “
Morphology of vapor-deposited acetonitrile films
,”
J. Phys. Chem. A
124
,
6237
(
2020
).
25.
E. C.
Ou
,
P. A.
Young
, and
P. R.
Norton
, “
Interaction of acetonitrile with platinum (111): More properties of the η2(C,N) state and new species in the submonolayer
,”
Surf. Sci.
277
,
123
(
1992
).
26.
B. A.
Sexton
and
N. R.
Avery
, “
Coordination of acetonitrile (CH3CN) to platinum (111): Evidence for an η2(C,N) species
,”
Surf. Sci.
129
,
21
(
1983
).
27.
A.
Markovits
and
C.
Minot
, “
Theoretical study of the acetonitrile flip-flop with the electric field orientation: Adsorption on a Pt(111) electrode surface
,”
Catal. Lett.
91
,
225
(
2003
).
28.
W. E.
Putnam
,
D. M.
McEachern
, and
J. E.
Kilpatrick
, “
Entropy and related thermodynamic properties of acetonitrile (methyl cyanide)
,”
J. Chem. Phys.
42
,
749
(
1965
).
29.
M. P.
Marzocchi
and
M. G.
Migliorini
, “
Raman-spectra and phase transition of crystalline CH3CN and CD3CN
,”
Spectrochim. Acta, Part A
29
,
1643
(
1973
).
30.
M. P.
Marzocchi
and
S.
Dobos
, “
Infrared-spectra and crystal-structure of CH3CN and CD3CN. Polarization and intensity measurements
,”
Spectrochim. Acta, Part. A
30
,
1437
(
1974
).
31.
B. H.
Torrie
and
B. M.
Powell
, “
Phase-transition in solid acetonitrile
,”
Mol. Phys.
75
,
613
(
1992
).
32.
R.
Enjalbert
and
J.
Galy
, “
CH3CN: X-ray structural investigation of a unique single crystal. β → α phase transition and crystal structure
,”
Acta Crystallogr., Sect. B: Struct. Sci.
58
,
1005
(
2002
).
33.
H.
Tizek
,
H.
Grothe
, and
E.
Knözinger
, “
Gas-phase deposition of acetonitrile: An attempt to understand Ostwald’s step rule on a molecular basis
,”
Chem. Phys. Lett.
383
,
129
(
2004
).
34.
C.
Wu
and
D.-S.
Yang
, “
Ordered structures and morphology-induced phase transitions at graphite-acetonitrile interfaces
,”
J. Phys. Chem. C
123
,
22390
(
2019
).
35.
R. S.
Smith
,
T.
Zubkov
, and
B. D.
Kay
, “
The effect of the incident collision energy on the phase and crystallization kinetics of vapor deposited water films
,”
J. Chem. Phys.
124
,
114710
(
2006
).
36.
T.
Zubkov
,
R. S.
Smith
,
T. R.
Engstrom
, and
B. D.
Kay
, “
Adsorption, desorption, and diffusion of nitrogen in a model nanoporous material. I. Surface limited desorption kinetics in amorphous solid water
,”
J. Chem. Phys.
127
,
184707
(
2007
).
37.
G. A.
Kimmel
,
J.
Matthiesen
,
M.
Baer
,
C. J.
Mundy
,
N. G.
Petrik
,
R. S.
Smith
,
Z.
Dohnálek
, and
B. D.
Kay
, “
No confinement needed: Observation of a metastable hydrophobic wetting two-layer ice on graphene
,”
J. Am. Chem. Soc.
131
,
12838
(
2009
).
38.
R. S.
Smith
,
J.
Matthiesen
, and
B. D.
Kay
, “
Desorption kinetics of methanol, ethanol, and water from graphene
,”
J. Phys. Chem. A
118
,
8242
(
2014
).
39.
R. S.
Smith
,
R. A.
May
, and
B. D.
Kay
, “
Desorption kinetics of Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from graphene and amorphous solid water surfaces
,”
J. Phys. Chem. B
120
,
1979
(
2016
).
40.
A. F.
Carlsson
and
R. J.
Madix
, “
Intrinsic and extrinsic precursors to adsorption: Coverage and temperature dependence of Kr adsorption on Pt(111)
,”
J. Chem. Phys.
114
,
5304
(
2001
).
41.
D. M.
Murphy
and
T.
Koop
, “
Review of the vapour pressures of ice and supercooled water for atmospheric applications
,”
Q. J. R. Meteorol. Soc.
131
,
1539
(
2005
).
42.
A. G. M.
Ferreira
and
L. Q.
Lobo
, “
The sublimation of argon, krypton, and xenon
,”
J. Chem. Thermodyn.
40
,
1621
(
2008
).
43.
W.
Wagner
,
T.
Riethmann
,
R.
Feistel
, and
A. H.
Harvey
, “
New equations for the sublimation pressure and melting pressure of H2O ice Ih
,”
J. Phys. Chem. Ref. Data
40
,
043103
(
2011
).
44.
E. L.
Pace
and
L. J.
Noe
, “
Infrared spectra of acetonitrile and acetonitrile-d3
,”
J. Chem. Phys.
49
,
5317
(
1968
).
45.
C. N. R.
Rao
and
K. J.
Rao
,
Phase Transitions in Solids
(
McGraw-Hill
,
New York
,
1978
).
46.
R. H.
Doremus
,
Rates of Phase Transformations
(
Academic Press
,
New York
,
1985
).
47.
C.
Yuan
,
R. S.
Smith
, and
B. D.
Kay
, “
Surface and bulk crystallization of amorphous solid water films: Confirmation of ‘top-down’ crystallization
,”
Surf. Sci.
652
,
350
(
2016
).
48.
C.
Yuan
,
R. S.
Smith
, and
B. D.
Kay
, “
Communication: Distinguishing between bulk and interface-enhanced crystallization in nanoscale films of amorphous solid water
,”
J. Chem. Phys.
146
,
031102
(
2017
).
49.
R. S.
Smith
,
C.
Yuan
,
N. G.
Petrik
,
G. A.
Kimmel
, and
B. D.
Kay
, “
Crystallization growth rates and front propagation in amorphous solid water films
,”
J. Chem. Phys.
150
,
214703
(
2019
).
50.
C.
Bishop
,
A.
Gujral
,
M. F.
Toney
,
L.
Yu
, and
M. D.
Ediger
, “
Vapor-deposited glass structure determined by deposition rate-substrate temperature superposition principle
,”
J. Phys. Chem. Lett.
10
,
3536
(
2019
).
51.
R. S.
Smith
,
R. A.
May
, and
B. D.
Kay
, “
Probing toluene and ethylbenzene stable glass formation using inert gas permeation
,”
J. Phys. Chem. Lett.
6
,
3639
(
2015
).
52.
K. L.
Kearns
,
S. F.
Swallen
,
M. D.
Ediger
,
T.
Wu
, and
L.
Yu
, “
Influence of substrate temperature on the stability of glasses prepared by vapor deposition
,”
J. Chem. Phys.
127
,
154702
(
2007
).
53.
S. F.
Swallen
,
K. L.
Kearns
,
M. K.
Mapes
,
Y. S.
Kim
,
R. J.
McMahon
,
M. D.
Ediger
,
T.
Wu
,
L.
Yu
, and
S.
Satija
, “
Organic glasses with exceptional thermodynamic and kinetic stability
,”
Science
315
,
353
(
2007
).
54.
T.
Ludwig
,
A. R.
Singh
, and
J. K.
Nørskov
, “
Acetonitrile transition metal interfaces from first principles
,”
J. Phys. Chem. Lett.
11
,
9802
(
2020
).
55.

Simple estimates assuming that the growth rates for the crystalline phase are approximately in the range from 0.1 to 105 ML/s suggest that more than 105 nuclei form in a typical experiment.

56.
J. M.
Escleine
,
B.
Monasse
,
E.
Wey
, and
J. M.
Haudin
, “
Influence of specimen thickness on isothermal crystallization kinetics. A theoretical-analysis
,”
Colloid Polym. Sci.
262
,
366
(
1984
).
57.
D. J.
Safarik
and
C. B.
Mullins
, “
Surface phase transformation kinetics: A geometrical model for thin films of nonvolatile and volatile solids
,”
J. Chem. Phys.
117
,
8110
(
2002
).
58.
J. R.
Espinosa
,
C.
Navarro
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
, “
On the time required to freeze water
,”
J. Chem. Phys.
145
,
211922
(
2016
).
59.
F.
Wang
,
V. N.
Richards
,
S. P.
Shields
, and
W. E.
Buhro
, “
Kinetics and mechanisms of aggregative nanocrystal growth
,”
Chem. Mat.
26
,
5
(
2014
).
60.
L.
Delzeit
,
J. P.
Devlin
, and
V.
Buch
, “
Structural relaxation rates near the ice surface: Basis for separation of the surface and subsurface spectra
,”
J. Chem. Phys.
107
,
3726
(
1997
).
61.
V.
Buch
,
B.
Sigurd
,
J. P.
Devlin
,
U.
Buck
, and
J. K.
Kazimirski
, “
Solid water clusters in the size range of tens-thousands of H2O: A combined computational/spectroscopic outlook
,”
Int. Rev. Phys. Chem.
23
,
375
(
2004
).
62.
A.
Haji-Akbari
and
P. G.
Debenedetti
, “
Perspective: Surface freezing in water: A nexus of experiments and simulations
,”
J. Chem. Phys.
147
,
060901
(
2017
).
63.
S.
Hussain
and
A.
Haji-Akbari
, “
How to quantify and avoid finite size effects in computational studies of crystal nucleation: The case of heterogeneous ice nucleation
,”
J. Chem. Phys.
154
,
014108
(
2021
).
64.
R. S.
Smith
,
J.
Matthiesen
,
J.
Knox
, and
B. D.
Kay
, “
Crystallization kinetics and excess free energy of H2O and D2O nanoscale films of amorphous solid water
,”
J. Phys. Chem. A
115
,
5908
(
2011
).
65.
A. F. C.
Arapiraca
and
J. R.
Mohallem
, “
DFT vibrationally averaged isotopic dipole moments of propane, propyne and water isotopologues
,”
Chem. Phys. Lett.
609
,
123
(
2014
).
You do not currently have access to this content.