Molecular dynamics simulations of water adsorbed in Material Institute Lavoisier MIL-101(Cr) metal–organic frameworks are performed to analyze the kinetic properties of water molecules confined in the framework at 298.15 K and under different vapor pressures and clarify the water adsorption mechanism in MIL-101(Cr). The terahertz frequency-domain spectra (THz-FDS) of water are calculated by applying fast Fourier transform to the configurational data of water molecules. According to the characteristic frequencies in the THz-FDS, the dominant motions of water molecules in MIL-101(Cr) can be categorized into three types: (1) low-frequency translational motion (0–0.5 THz), (2) medium-frequency vibrational motion (2–2.5 THz), and (3) high-frequency vibrational motion (>6 THz). Each type of water motion is confirmed by visualizing the water configuration in MIL-101(Cr). The ratio of the number of water molecules with low-frequency translational motion to the total number of water molecules increases with the increase in vapor pressure. In contrast, that with medium-frequency vibrational motion is found to decrease with vapor pressure, exhibiting a pronounced decrease after water condensation has started in the cavities. That with the high-frequency vibrational motion is almost independent of the vapor pressure. The interactions between different types of water molecules affect the THz-FDS. Furthermore, the self-diffusion coefficient and the velocity auto-correlation function are calculated to clarify the adsorption state of the water confined in MIL-101(Cr). To confirm that the general trend of the THz-FDS does not depend on the water model, the simulations are performed using three water models, namely, rigid SPC/E, flexible SPC/E, and rigid TIP5PEw.

1.
A. E.
Baumann
,
D. A.
Burns
,
B.
Liu
, and
V. S.
Thoi
,
Commun. Chem.
2
,
86
(
2019
).
2.
H.
Wang
,
Q.-L.
Zhu
,
R.
Zou
, and
Q.
Xu
,
Chem
2
,
52
(
2017
).
3.
H.-C.
Zhou
,
J. R.
Long
, and
O. M.
Yaghi
,
Chem. Rev.
112
,
673
(
2012
).
4.
C. C.
Hou
and
Q.
Xu
,
Adv. Energy Mater.
9
,
1801307
(
2019
).
5.
R. G.
Abdulhalim
,
P. M.
Bhatt
,
Y.
Belmabkhout
,
A.
Shkurenko
,
K.
Adil
,
L. J.
Barbour
, and
M.
Eddaoudi
,
J. Am. Chem. Soc.
139
,
10715
(
2017
).
6.
S.
Yang
,
H.
Kim
,
S. R.
Rao
,
S.
Narayanan
,
E. A.
Kapustin
,
H.
Furukawa
,
A. S.
Umans
,
O. M.
Yaghi
, and
E. N.
Wang
,
Science
356
,
430
(
2017
).
7.
N. C.
Burtch
,
H.
Jasuja
, and
K. S.
Walton
,
Chem. Rev.
114
,
10575
(
2014
).
8.
K.
Yanagita
,
J.
Hwang
,
J. A.
Shamim
,
W.-L.
Hsu
,
R.
Matsuda
,
A.
Endo
,
J.-J.
Delaunay
, and
H.
Daiguji
,
J. Phys. Chem. C
123
,
387
(
2019
).
9.
N.
Ko
,
P. G.
Choi
,
J.
Hong
,
M.
Yeo
,
S.
Sung
,
K. E.
Cordova
,
H. J.
Park
,
J. K.
Yang
, and
J.
Kim
,
J. Mater. Chem. A
3
,
2057
(
2015
).
10.
S.
Cui
,
M.
Qin
,
A.
Marandi
,
V.
Steggles
,
S.
Wang
,
X.
Feng
,
F.
Nouar
, and
C.
Serre
,
Sci. Rep.
8
,
15284
(
2018
).
11.
G.
Férey
,
C.
Mellot-Draznieks
,
C.
Serre
,
F.
Millange
,
J.
Dutour
,
S.
Surblé
, and
I.
Margiolaki
,
Science
309
,
2040
(
2005
).
12.
G.
Akiyama
,
R.
Matsuda
,
H.
Sato
,
A.
Hori
,
M.
Takata
, and
S.
Kitagawa
,
Microporous Mesoporous Mater.
157
,
89
(
2012
).
13.
S.
Xian
,
Y.
Yu
,
J.
Xiao
,
Z.
Zhang
,
Q.
Xia
,
H.
Wang
, and
Z.
Li
,
RSC Adv.
5
,
1827
(
2015
).
14.
S.
Brunauer
,
P. H.
Emmett
, and
E.
Teller
,
J. Am. Chem. Soc.
60
,
309
(
1938
).
15.
M. F.
De Lange
,
J.-J.
Gutierrez-Sevillano
,
S.
Hamad
,
T. J. H.
Vlugt
,
S.
Calero
,
J.
Gascon
, and
F.
Kapteijn
,
J. Phys. Chem. C
117
,
7613
(
2013
).
16.
Y. F.
Chen
,
R.
Babarao
,
S. I.
Sandler
, and
J. W.
Jiang
,
Langmuir
26
,
8743
(
2010
).
17.
J.
Ehrenmann
,
S. K.
Henninger
, and
C.
Janiak
,
Eur. J. Inorg. Chem.
2011
,
471
.
18.
P.
Küsgens
,
M.
Rose
,
I.
Senkovska
,
H.
Fröde
,
A.
Henschel
,
S.
Siegle
, and
S.
Kaskel
,
Microporous Mesoporous Mater.
120
,
325
(
2009
).
19.
Y.-K.
Seo
,
J. W.
Yoon
,
J. S.
Lee
,
Y. K.
Hwang
,
C.-H.
Jun
,
J.-S.
Chang
,
S.
Wuttke
,
P.
Bazin
,
A.
Vimont
,
M.
Daturi
,
S.
Bourrelly
,
P. L.
Llewellyn
,
P.
Horcajada
,
C.
Serre
, and
G.
Férey
,
Advanced Materials
24
,
806
(
2012
).
20.
Z.
Liu
,
Y.
Chen
,
J.
Sun
,
H.
Lang
,
W.
Gao
, and
Y.
Chi
,
Inorganica Chimica Acta
473
,
29
(
2018
).
21.
J.
Zheng
,
R. S.
Vemuri
,
L.
Estevez
,
P. K.
Koech
,
T.
Varga
,
D. M.
Camaioni
,
T. A.
Blake
,
B. P.
McGrail
, and
R. K.
Motkuri
,
J. Am. Chem. Soc.
139
,
10601
(
2017
).
22.
P. D.
Kolokathis
,
E.
Pantatosaki
, and
G. K.
Papadopoulos
,
J. Phys. Chem. C
119
,
20074
(
2015
).
23.
D.
Dubbeldam
and
R. Q.
Snurr
,
Mol. Simul.
33
,
305
(
2007
).
24.
D.
Dubbeldam
,
A.
Torres-Knoop
, and
K. S.
Walton
,
Mol. Simul.
39
,
1253
(
2013
).
25.
D.
Dubbeldam
,
S.
Calero
,
D. E.
Ellis
, and
R. Q.
Snurr
,
Mol. Simul.
42
,
81
(
2016
).
26.
A.
Sławek
,
J. M.
Vicent-Luna
,
B.
Marszałek
,
B.
Gil
,
R. E.
Morris
,
W.
Makowski
, and
S.
Calero
,
Chem. Mater.
30
,
5116
(
2018
).
27.
F.
Salles
,
S.
Bourrelly
,
H.
Jobic
,
T.
Devic
,
V.
Guillerm
,
P.
Llewellyn
,
C.
Serre
,
G.
Ferey
, and
G.
Maurin
,
J. Phys. Chem. C
115
,
10764
(
2011
).
28.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
29.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
,
J. Chem. Phys.
120
,
9665
(
2004
).
30.
S. W.
Rick
,
J. Chem. Phys.
120
,
6085
(
2004
).
31.
A.
Agrawal
,
M.
Agrawal
,
D.
Suh
,
S.
Fei
,
A.
Alizadeh
,
Y.
Ma
,
R.
Matsuda
,
W.-L.
Hsu
, and
H.
Daiguji
,
ACS Omega
5
,
17193
(
2020
).
32.
A.
Vimont
,
J.-M.
Goupil
,
J.-C.
Lavalley
,
M.
Daturi
,
S.
Surblé
,
C.
Serre
,
F.
Millange
,
G.
Férey
, and
N.
Audebrand
,
J. Am. Chem. Soc.
128
,
3218
(
2006
).
33.
J. M.
Salazar
,
G.
Weber
,
J. M.
Simon
,
I.
Bezverkhyy
, and
J. P.
Bellat
,
J. Chem. Phys.
142
,
124702
(
2015
).
34.
J.
Tennyson
,
P. F.
Bernath
,
L. R.
Brown
,
A.
Campargue
,
M. R.
Carleer
,
A. G.
Császár
,
R. R.
Gamache
,
J. T.
Hodges
,
A.
Jenouvrier
,
O. V.
Naumenko
,
O. L.
Polyansky
,
L. S.
Rothman
,
R. A.
Toth
,
A. C.
Vandaele
,
N. F.
Zobov
,
L.
Daumont
,
A. Z.
Fazliev
,
T.
Furtenbacher
,
I. E.
Gordon
,
S. N.
Mikhailenko
, and
S. V.
Shirin
,
J. Quant. Spectrosc. Radiat. Transfer
110
,
573
(
2009
).
35.
Y.
Xu
and
M.
Havenith
,
J. Chem. Phys.
143
,
170901
(
2015
).
36.
H.
Benedict
,
H.-H.
Limbach
,
M.
Wehlan
,
W.-P.
Fehlhammer
,
N. S.
Golubev
, and
R.
Janoschek
,
J. Am. Chem. Soc.
120
,
2939
(
1998
).
37.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
,
The Journal of Chemical Physics
124
,
24503
(
2006
).
38.
D.
Barpaga
,
V. T.
Nguyen
,
B. K.
Medasani
,
S.
Chatterjee
,
B. P.
McGrail
,
R. K.
Motkuri
, and
L. X.
Dang
,
Sci. Rep.
9
,
10289
(
2019
).
39.
B. T. H.
Jeazet
,
T.
Koschine
,
C.
Staudt
,
K.
Raetzke
, and
C.
Janiak
,
Membranes
3
,
331
(
2013
).
40.
S. G.
Johnson
and
M.
Frigo
,
IEEE Trans. Signal Process.
55
,
111
(
2007
).
41.
K.
Meier
,
A.
Laesecke
, and
S.
Kabelac
,
J. Chem. Phys.
121
,
9526
(
2004
).
42.
K. H.
Tsai
and
T.-M.
Wu
,
Chem. Phys. Lett.
417
,
389
(
2006
).
43.
V. I.
Gaiduk
and
J. K.
Vij
,
Phys. Chem. Chem. Phys.
3
,
5173
(
2001
).
44.
I. N.
Tsimpanogiannis
,
O. A.
Moultos
,
L. F. M.
Franco
,
M. B.
de M. Spera
,
M.
Erdős
, and
I. G.
Economou
,
Mol. Simul.
45
,
425
(
2019
).
45.
K.
Krynicki
,
C. D.
Green
, and
D. W.
Sawyer
,
Faraday Discuss. Chem. Soc.
66
,
199
(
1978
).
46.
K.
Yamashita
and
H.
Daiguji
,
J. Phys. Chem. C
117
,
2084
(
2013
).
47.
J.
Zielkiewicz
,
J. Chem. Phys.
123
,
104501
(
2005
).
48.
T.
Head-Gordon
and
M. E.
Johnson
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
7973
(
2006
).
49.
F. G.
Alabarse
,
J.
Haines
,
O.
Cambon
,
C.
Levelut
,
D.
Bourgogne
,
A.
Haidoux
,
D.
Granier
, and
B.
Coasne
,
Phys. Rev. Lett.
109
,
035701
(
2012
).

Supplementary Material

You do not currently have access to this content.