Generalization of an earlier reduced-density-matrix-based vibrational assignment algorithm is given, applicable for systems exhibiting both large-amplitude motions, including tunneling, and degenerate vibrational modes. The algorithm developed is used to study the structure of the excited vibrational wave functions of the ammonia molecule, 14NH3. Characterization of the complex dynamics of systems with several degenerate vibrations requires reconsidering the traditional degenerate-mode description given by vibrational angular momentum quantum numbers and switching to a symmetry-based approach that directly predicts state degeneracy and uncovers relations between degenerate modes. Out of the 600 distinct vibrational eigenstates of ammonia obtained by a full-dimensional variational computation, the developed methodology allows for the assignment of about 500 with meaningful labels. This study confirms that vibrationally excited states truly have modal character recognizable up to very high energies even for the non-trivial case of ammonia, a molecule which exhibits a tunneling motion and has two two-dimensional normal modes. The modal characteristics of the excited states and the interplay of the vibrational modes can be easily visualized by the reduced-density matrices, giving an insight into the complex modal behavior directed by symmetry.

1.
A. G.
Császár
,
C.
Fábri
,
T.
Szidarovszky
,
E.
Mátyus
,
T.
Furtenbacher
, and
G.
Czakó
, “
Fourth age of quantum chemistry: Molecules in motion
,”
Phys. Chem. Chem. Phys.
14
,
1085
1106
(
2012
).
2.
E.
Mátyus
,
C.
Fábri
,
T.
Szidarovszky
,
G.
Czakó
,
W. D.
Allen
, and
A. G.
Császár
, “
Assigning quantum labels to variationally computed rotational-vibrational eigenstates of polyatomic molecules
,”
J. Chem. Phys.
133
,
034113
(
2010
).
3.
G.
Hose
and
H. S.
Taylor
,
Phys. Rev. Lett.
51
,
947
(
1983
).
4.
J.
Šmydke
,
C.
Fábri
,
J.
Sarka
, and
A. G.
Császár
, “
Rovibrational quantum dynamics of the vinyl radical and its deuterated isotopologues
,”
Phys. Chem. Chem. Phys.
21
,
3453
3472
(
2019
).
5.
J.
Šmydke
and
A. G.
Császár
, “
On the use of reduced-density matrices for the semi-automatic assignment of vibrational states
,”
Mol. Phys.
117
,
1682
1693
(
2019
).
6.
P. A.
Coles
,
S. N.
Yurchenko
, and
J.
Tennyson
, “
ExoMol molecular line lists–XXXV. A rotation-vibration line list for hot ammonia
,”
Mon. Not. R. Astron. Soc.
490
,
4638
4647
(
2019
).
7.
C. C. J.
Roothaan
, “
New developments in molecular orbital theory
,”
Rev. Mod. Phys.
23
,
69
(
1951
).
8.
E. B.
Wilson
, Jr.
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations
(
McGraw-Hill
,
New York
,
1955
).
9.
J. N.
Murrell
,
S.
Carter
,
S. C.
Farantos
,
P.
Huxley
, and
A. J. C.
Varandas
,
Molecular Potential Energy Surfaces
(
Wiley
,
New York
,
1984
).
10.
P. G.
Mezey
,
Potential Energy Hypersurfaces
(
Elsevier
,
New York
,
1987
).
11.
A. G.
Császár
,
W. D.
Allen
,
Y.
Yamaguchi
, and
H. F.
Schaefer
, “
Ab initio determination of accurate ground electronic state potential energy hypersurfaces for small molecules
,” in
Computational Molecular Spectroscopy
(
Wiley
,
New York
,
2000
), pp.
15
68
.
12.
M. S.
Child
and
L.
Halonen
, “
Overtone frequencies and intensities in the local mode picture
,”
Adv. Chem. Phys.
57
,
1
58
(
1984
).
13.
S. N.
Yurchenko
,
W.
Thiel
, and
P.
Jensen
, “
Theoretical rovibrational energies (trove): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules
,”
J. Mol. Spectrosc.
245
,
126
140
(
2007
).
14.
T.
Mathea
and
G.
Rauhut
, “
Assignment of vibrational states within configuration interaction calculations
,”
J. Chem. Phys.
152
,
194112
(
2020
).
15.
M.
Gruebele
, “
Intensities and rates in the spectral domain without eigenvectors
,”
J. Chem. Phys.
104
,
2453
2456
(
1996
).
16.
H.-G.
Yu
,
H.
Song
, and
M.
Yang
, “
A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C2H3
,”
J. Chem. Phys.
146
,
224307
(
2017
).
17.
A. G.
Császár
,
E.
Mátyus
,
T.
Szidarovszky
,
L.
Lodi
,
N. F.
Zobov
,
S. V.
Shirin
,
O. L.
Polyansky
, and
J.
Tennyson
, “
First-principles prediction and partial characterization of the vibrational states of water up to dissociation
,”
J. Quant. Spectrosc. Radiat. Transfer
111
,
1043
1064
(
2010
).
18.
D. A.
Sadovskií
,
N. G.
Fulton
,
J. R.
Henderson
,
J.
Tennyson
, and
B. I.
Zhilinskií
, “
Nonlinear normal modes and local bending vibrations of H3+ and D3+.
,”
J. Chem. Phys.
99
,
906
918
(
1993
).
19.
J.
Sarka
and
A. G.
Császár
, “
Interpretation of the vibrational energy level structure of the astructural molecular ion H5+ and all of its deuterated isotopomers
,”
J. Chem. Phys.
144
,
154309
(
2016
).
20.
R.
Dawes
,
X.-G.
Wang
,
A. W.
Jasper
, and
T.
Carrington
, “
Nitrous oxide dimer: A new potential energy surface and rovibrational spectrum of the nonpolar isomer
,”
J. Chem. Phys.
133
,
134304
(
2010
).
21.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
NRC
,
Ottawa
,
1998
).
22.
K.
Chubb
,
P.
Jensen
, and
S.
Yurchenko
, “
Symmetry adaptation of the rotation-vibration theory for linear molecules
,”
Symmetry
10
,
137
(
2018
).
24.
M.
Hamermesh
,
Group Theory and Its Application to Physical Problems
(
Addison-Wesley
,
Reading, MA
,
1962
).
25.
A. G.
Császár
, “
Anharmonic force field of CO2
,”
J. Phys. Chem.
96
,
7898
7904
(
1992
).
26.
E.
Mátyus
,
G.
Czakó
, and
A. G.
Császár
, “
Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations
,”
J. Chem. Phys.
130
,
134112
(
2009
).
27.
C.
Fábri
,
E.
Mátyus
, and
A. G.
Császár
, “
Rotating full- and reduced-dimensional quantum chemical models of molecules
,”
J. Chem. Phys.
134
,
074105
(
2011
).
28.
Z.
Bacic
and
J. C.
Light
,
Annu. Rev. Phys. Chem.
40
,
469
(
1989
).
29.
J. C.
Light
and
T.
Carrington
, “
Discrete-variable representations and their utilization
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
2007
), pp.
263
310
.
30.
C.
Lanczos
,
J. Res. Natl. Bur. Stand.
45
,
255
(
1950
).
31.
S. N.
Yurchenko
,
R. J.
Barber
,
J.
Tennyson
,
W.
Thiel
, and
P.
Jensen
, “
Towards efficient refinement of molecular potential energy surfaces: Ammonia as a case study
,”
J. Mol. Spectrosc.
268
,
123
129
(
2011
).
32.
T.
Furtenbacher
,
P. A.
Coles
,
J.
Tennyson
,
S. N.
Yurchenko
,
S.
Yu
,
B.
Drouin
,
R.
Tóbiás
, and
A. G.
Császár
, “
Empirical rovibrational energy levels of ammonia up to 7500 cm−1
,”
J. Quant. Spectrosc. Radiat. Transfer
251
,
107027
(
2020
).

Supplementary Material

You do not currently have access to this content.