Octyl methoxycinnamate (2-ethylhexyl 4-methoxycinnamate, OMC) is a commercial sunscreen known as octinoxate with excellent UVB filter properties. However, it is known to undergo a series of photodegradation processes that decrease its effectiveness as a UVB filter. In particular, the trans (E) form—which is considered so far as the most stable isomer—converts to the cis (Z) form under the effect of light. In this work, by using post-Hartree–Fock approaches [CCSD, CCSD(t), and CCSD + T(CCSD)] on ground state OMC geometries optimized at the MP2 level, we show that the cis and trans forms of the gas-phase OMC molecule have comparable stability. Test calculations on the same structures with a series of dispersion-corrected density functional theory-based approaches including the B2PLYP double hybrid predict the trans structures to be energetically favored, missing the subtle stabilization of cis-OMC. Our results suggest that the cis form is stabilized by intra-molecular dispersion interactions, leading to a folded more compact structure than the trans isomer.

1.
T. L.
Diepgen
and
V.
Mahler
, “
The epidemiology of skin cancer
,”
Br. J. Dermatol.
146
,
1
6
(
2002
).
2.
N. A.
Shaath
, “
Ultraviolet filters
,”
Photochem. Photobiol. Sci.
9
,
464
469
(
2010
).
3.
D. R.
Sambandan
and
D.
Ratner
, “
Sunscreens: An overview and update
,”
J. Am. Acad. Dermatol.
64
,
748
758
(
2011
).
4.
S.
Pattanaargson
and
P.
Limphong
, “
Stability of octyl methoxycinnamate and identification of its photo-degradation product
,”
Int. J. Cosmet. Sci.
23
,
153
160
(
2001
).
5.
H.
Gonzenbach
,
T. J.
Hill
, and
T. G.
Truscott
, “
The triplet energy levels of UVA and UVB sunscreens
,”
J. Photochem. Photobiol., B
16
,
377
379
(
1992
).
6.
K. K.
Broadbent
,
B. S.
Martincigh
,
M. W.
Raynor
,
L. F.
Salter
,
R.
Moulder
,
P.
Sjöberg
, and
K. E.
Markides
, “
Capillary supercritical fluid chromatography combined with atmospheric pressure chemical ionisation mass spectrometry for the investigation of photoproduct formation in the sunscreen absorber 2-ethylhexyl-p-methoxycinnamate
,”
J. Chromatogr. A
732
,
101
110
(
1996
).
7.
V.
Ambrogi
,
L.
Latterini
,
F.
Marmottini
,
C.
Pagano
, and
M.
Ricci
, “
Mesoporous silicate MCM-41 as a particulate carrier for octyl methoxycinnamate: Sunscreen release and photostability
,”
J. Pharm. Sci.
102
,
1468
1475
(
2013
).
8.
O. I.
Parisi
,
D.
Aiello
,
M. F.
Casula
,
F.
Puoci
,
R.
Malivindi
,
L.
Scrivano
, and
F.
Testa
, “
Mesoporous nanocrystalline TiO2 loaded with ferulic acid for sunscreen and photo-protection: Safety and efficacy assessment
,”
RSC Adv.
6
,
83767
83775
(
2016
).
9.
N.
Serpone
,
A.
Salinaro
,
A. V.
Emeline
,
S.
Horikoshi
,
H.
Hidaka
, and
J.
Zhao
, “
An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents
,”
Photochem. Photobiol. Sci.
1
,
970
981
(
2002
).
10.
S.
Pattanaargson
,
T.
Munhapol
,
P.
Hirunsupachot
, and
P.
Luangthongaram
, “
Photoisomerization of octyl methoxycinnamate
,”
J. Photochem. Photobiol., A
161
,
269
274
(
2004
).
11.
R. M.
Sayre
,
J. C.
Dowdy
,
A. J.
Gerwig
,
W. J.
Shields
, and
R. V.
Lloyd
, “
Unexpected photolysis of the sunscreen octinoxate in the presence of the sunscreen avobenzone
,”
Photochem. Photobiol.
81
,
452
(
2005
).
12.
L. A.
MacManus-Spencer
,
M. L.
Tse
,
J. L.
Klein
, and
A. E.
Kracunas
, “
Aqueous photolysis of the organic ultraviolet filter chemical octyl methoxycinnamate
,”
Environ. Sci. Technol.
45
,
3931
3937
(
2011
).
13.
S. P.
Huong
,
V.
Andrieu
,
J.-P.
Reynier
,
E.
Rocher
, and
J.-D.
Fourneron
, “
The photoisomerization of the sunscreen ethylhexyl p-methoxy cinnamate and its influence on the sun protection factor
,”
J. Photochem. Photobiol., A
186
,
65
70
(
2007
).
14.
K. M.
Hanson
,
S.
Narayanan
,
V. M.
Nichols
, and
C. J.
Bardeen
, “
Photochemical degradation of the UV filter octyl methoxycinnamate in solution and in aggregates
,”
Photochem. Photobiol. Sci.
14
,
1607
1616
(
2015
).
15.
T. M.
Karpkird
,
S.
Wanichweacharungruang
, and
B.
Albinsson
, “
Photophysical characterization of cinnamates
,”
Photochem. Photobiol. Sci.
8
,
1455
1460
(
2009
).
16.
A. J. M.
Santos
,
M. S.
Miranda
, and
J. C. G.
Esteves da Silva
, “
The degradation products of UV filters in aqueous and chlorinated aqueous solutions
,”
Water Res.
46
,
3167
3176
(
2012
).
17.
C.
Puglia
,
F.
Bonina
,
L.
Rizza
,
P.
Blasi
,
A.
Schoubben
,
R.
Perrotta
,
M. S.
Tarico
, and
E.
Damiani
, “
Lipid nanoparticles as carrier for octyl-methoxycinnamate: In vitro percutaneous absorption and photostability studies
,”
J. Pharm. Sci.
101
,
301
311
(
2012
).
18.
A. L. M.
Daneluti
,
F. M.
Neto
,
M. V. R.
Velasco
,
A. R.
Baby
, and
J.
do Rosário Matos
, “
Evaluation and characterization of the encapsulation/entrapping process of octyl methoxycinnamate in ordered mesoporous silica type SBA-15
,”
J. Therm. Anal. Calorim.
131
,
789
798
(
2018
).
19.
R.
Rodil
,
M.
Moeder
,
R.
Altenburger
, and
M.
Schmitt-Jansen
, “
Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water
,”
Anal. Bioanal. Chem.
395
,
1513
1524
(
2009
).
20.
D.
Dondi
,
A.
Albini
, and
N.
Serpone
, “
Interactions between different solar UVB/UVA filters contained in commercial suncreams and consequent loss of UV protection
,”
Photochem. Photobiol. Sci.
5
,
835
843
(
2006
).
21.
S.
Scalia
and
M.
Mezzena
, “
Photostabilization effect of quercetin on the UV filter combination, butyl methoxydibenzoylmethane-octyl methoxycinnamate
,”
Photochem. Photobiol.
86
,
273
278
(
2010
).
22.
L. A.
Baker
,
S. E.
Greenough
, and
V. G.
Stavros
, “
A perspective on the ultrafast photochemistry of solution-phase sunscreen molecules
,”
J. Phys. Chem. Lett.
7
,
4655
4665
(
2016
).
23.
E. L.
Holt
and
V. G.
Stavros
, “
Applications of ultrafast spectroscopy to sunscreen development, from first principles to complex mixtures
,”
Int. Rev. Phys. Chem.
38
,
243
285
(
2019
).
24.
K. M.
Krokidi
,
M. A. P.
Turner
,
P. A. J.
Pearcy
, and
V. G.
Stavros
, “
A systematic approach to methyl cinnamate photodynamics
,”
Mol. Phys.
119
,
e1811910
(
2021
).
25.
J. M.
Woolley
,
R.
Losantos
,
D.
Sampedro
, and
V. G.
Stavros
, “
Computational and experimental characterization of novel ultraviolet filters
,”
Phys. Chem. Chem. Phys.
22
,
25390
25395
(
2020
).
26.
S.
Kenjo
,
Y.
Iida
,
N.
Chaki
,
S.-n.
Kinoshita
,
Y.
Inokuchi
,
K.
Yamazaki
, and
T.
Ebata
, “
Laser spectroscopic study on sinapic acid and its hydrated complex in a cold gas phase molecular beam
,”
Chem. Phys.
515
,
381
386
(
2018
).
27.
E. M. M.
Tan
,
M.
Hilbers
, and
W. J.
Buma
, “
Excited-state dynamics of isolated and microsolvated cinnamate-based UV-B sunscreens
,”
J. Phys. Chem. Lett.
5
,
2464
2468
(
2014
).
28.
Y.
Miyazaki
,
K.
Yamamoto
,
J.
Aoki
,
T.
Ikeda
,
Y.
Inokuchi
,
M.
Ehara
, and
T.
Ebata
, “
Experimental and theoretical study on the excited-state dynamics of ortho-, meta-, and para-methoxy methylcinnamate
,”
J. Chem. Phys.
141
,
244313
(
2014
).
29.
Y.
Miyazaki
,
Y.
Inokuchi
,
N.
Akai
, and
T.
Ebata
, “
Direct spectroscopic evidence of photoisomerization in para-methoxy methylcinnamate revealed by low-temperature matrix-isolation FTIR spectroscopy
,”
J. Phys. Chem. Lett.
6
,
1134
1139
(
2015
).
30.
Y.
Peperstraete
,
M.
Staniforth
,
L. A.
Baker
,
N. D. N.
Rodrigues
,
N. C.
Cole-Filipiak
,
W.-D.
Quan
, and
V. G.
Stavros
, “
Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules
,”
Phys. Chem. Chem. Phys.
18
,
28140
28149
(
2016
).
31.
S.
Muramatsu
,
S.
Nakayama
,
S.-n.
Kinoshita
,
Y.
Onitsuka
,
H.
Kohguchi
,
Y.
Inokuchi
,
C.
Zhu
, and
T.
Ebata
, “
Electronic state and photophysics of 2-ethylhexyl-4-methoxycinnamate as UV-B sunscreen under jet-cooled condition
,”
J. Phys. Chem. A
124
,
1272
1278
(
2020
).
32.
M.
Promkatkaew
,
S.
Suramitr
,
T. M.
Karpkird
,
S.
Namuangruk
,
M.
Ehara
, and
S.
Hannongbua
, “
Absorption and emission spectra of ultraviolet B blocking methoxy substituted cinnamates investigated using the symmetry-adapted cluster configuration interaction method
,”
J. Chem. Phys.
131
,
224306
(
2009
).
33.
M.
de Groot
,
E. V.
Gromov
,
H.
Köppel
, and
W. J.
Buma
, “
High-resolution spectroscopy of methyl 4-hydroxycinnamate and its hydrogen-bonded water complex
,”
J. Phys. Chem. B
112
,
4427
4434
(
2008
).
34.
D.
Sampedro
, “
Computational exploration of natural sunscreens
,”
Phys. Chem. Chem. Phys.
13
,
5584
5586
(
2011
).
35.
M.
Promkatkaew
,
S.
Suramitr
,
T.
Karpkird
,
M.
Ehara
, and
S.
Hannongbua
, “
Absorption and emission properties of various substituted cinnamic acids and cinnamates, based on TDDFT investigation
,”
Int. J. Quantum Chem.
113
,
542
554
(
2013
).
36.
E. M. M.
Tan
,
S.
Amirjalayer
,
S.
Smolarek
,
A.
Vdovin
,
A. M.
Rijs
, and
W. J.
Buma
, “
Conformational heterogeneity of methyl 4-hydroxycinnamate: A gas-phase UV–IR spectroscopic study
,”
J. Phys. Chem. B
117
,
4798
4805
(
2013
).
37.
X.-P.
Chang
,
C.-X.
Li
,
B.-B.
Xie
, and
G.
Cui
, “
Photoprotection mechanism of p-methoxy methylcinnamate: A CASPT2 study
,”
J. Phys. Chem. A
119
,
11488
11497
(
2015
).
38.
J.
Moon
,
H.
Baek
,
J. S.
Lim
, and
J.
Kim
, “
TDDFT and MS-CASPT2 study of the excited states of para-methoxymethylcinnamate
,”
Bull. Korean Chem. Soc.
39
,
427
434
(
2018
).
39.
C.-X.
Li
,
W.-W.
Guo
,
B.-B.
Xie
, and
G.
Cui
, “
Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations
,”
J. Chem. Phys.
145
,
074308
(
2016
).
40.
K.
Yamazaki
,
Y.
Miyazaki
,
Y.
Harabuchi
,
T.
Taketsugu
,
S.
Maeda
,
Y.
Inokuchi
,
S.-n.
Kinoshita
,
M.
Sumida
,
Y.
Onitsuka
,
H.
Kohguchi
,
M.
Ehara
, and
T.
Ebata
, “
Multistep intersystem crossing pathways in cinnamate-based UV-B sunscreens
,”
J. Phys. Chem. Lett.
7
,
4001
4007
(
2016
).
41.
X.
Zhao
,
J.
Luo
,
S.
Yang
, and
K.
Han
, “
New insight into the photoprotection mechanism of plant sunscreens: Adiabatic relaxation competing with nonadiabatic relaxation in the cis → trans photoisomerization of methyl sinapate
,”
J. Phys. Chem. Lett.
10
,
4197
4202
(
2019
).
42.
S.-n.
Kinoshita
,
Y.
Harabuchi
,
Y.
Inokuchi
,
S.
Maeda
,
M.
Ehara
,
K.
Yamazaki
, and
T.
Ebata
, “
Substitution effect on the nonradiative decay and trans → cis photoisomerization route: A guideline to develop efficient cinnamate based sunscreens
,”
Phys. Chem. Chem. Phys.
23
,
834
845
(
2021
).
43.
J.
Fan
,
W.
Roeterdink
, and
W. J.
Buma
, “
Excited-state dynamics of isolated and (micro)solvated methyl sinapate: The bright and shady sides of a natural sunscreen
,”
Mol. Phys.
119
,
e1825850
(
2021
).
44.
X.-Y.
Xie
,
C.-X.
Li
,
Q.
Fang
, and
G.
Cui
, “
Mechanistic photochemistry of methyl-4-hydroxycinnamate chromophore and its one-water complexes: Insights from MS-CASPT2 study
,”
J. Phys. Chem. A
120
,
6014
6022
(
2016
).
45.
S.-n.
Kinoshita
,
Y.
Inokuchi
,
Y.
Onitsuka
,
H.
Kohguchi
,
N.
Akai
,
T.
Shiraogawa
,
M.
Ehara
,
K.
Yamazaki
,
Y.
Harabuchi
,
S.
Maeda
, and
T.
Ebata
, “
The direct observation of the doorway π*1 state of methylcinnamate and hydrogen-bonding effects on the photochemistry of cinnamate-based sunscreens
,”
Phys. Chem. Chem. Phys.
21
,
19755
19763
(
2019
).
46.
X.
Zhao
,
F.
Ji
,
Y.
Liang
,
P.
Li
,
Y.
Jia
,
X.
Feng
,
Y.
Sun
,
Y.
Shi
,
L.
Zhu
, and
G.
Zhao
, “
Theoretical and spectroscopic investigation on ultrafast nonadiabatic photoprotective mechanism of novel ultraviolet protective compounds inspired by natural sunscreens
,”
J. Lumin.
223
,
117228
(
2020
).
47.
M. D.
Horbury
,
A. L.
Flourat
,
S. E.
Greenough
,
F.
Allais
, and
V. G.
Stavros
, “
Investigating isomer specific photoprotection in a model plant sunscreen
,”
Chem. Commun.
54
,
936
939
(
2018
).
48.
L. F.
Alves
,
R.
Gargano
,
S. K. B.
Alcanfor
,
L. A. S.
Romeiro
, and
J. B. L.
Martins
, “
A chromophoric study of 2-ethylhexyl p-methoxycinnamate
,”
Chem. Phys. Lett.
516
,
162
165
(
2011
).
49.
A.
Gackowska
,
M.
Przybyłek
,
W.
Studziński
, and
J.
Gaca
, “
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl 4-methoxycinnamate in the presence of reactive oxygen and chlorine species
,”
Cent. Eur. J. Chem.
12
,
612
623
(
2014
).
50.
M. S.
Miranda
,
L.
Pinto da Silva
, and
J. C. G.
Esteves da Silva
, “
UV filter 2-ethylhexyl 4-methoxycinnamate: A structure, energetic and UV-vis spectral analysis based on density functional theory
,”
J. Phys. Org. Chem.
27
,
47
56
(
2014
).
51.
R. D. A.
Garcia
,
V. G.
Maltarollo
,
K. M.
Honório
, and
G. H.
Trossini
, “
Benchmark studies of UV–vis spectra simulation for cinnamates with UV filter profile
,”
J. Mol.Model.
21
,
150
(
2015
).
52.
R.
Car
and
M.
Parrinello
, “
Unified approach for molecular dynamics and density-functional theory
,”
Phys. Rev. Lett.
55
,
2471
2474
(
1985
).
53.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
54.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2006
).
55.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
622
(
1934
).
56.
T. H.
Dunning
and
P. J.
Hay
, “
Gaussian basis sets for molecular calculations
,” in
Methods of Electronic Structure Theory
(
Springer
,
1977
), pp.
1
27
.
57.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
58.
P. L.
Barbieri
,
P. A.
Fantin
, and
F. E.
Jorge
, “
Gaussian basis sets of triple and quadruple zeta valence quality for correlated wave functions
,”
Mol. Phys.
104
,
2945
2954
(
2006
).
59.
P. A.
Fantin
,
P. L.
Barbieri
,
A.
Canal Neto
, and
F. E.
Jorge
, “
Augmented Gaussian basis sets of triple and quadruple zeta valence quality for the atoms H and from Li to Ar: Applications in HF, MP2, and DFT calculations of molecular dipole moment and dipole (hyper)polarizability
,”
J. Mol. Struct.: THEOCHEM
810
,
103
111
(
2007
).
60.
J.
Ĉízek
, “
On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods
,”
J. Chem. Phys.
45
,
4256
4266
(
1966
).
61.
J.
Čižek
and
J.
Paldus
, “
Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methods
,”
Int. J. Quantum Chem.
5
,
359
379
(
1971
).
62.
G. D.
Purvis
and
R. J.
Bartlett
, “
A full coupled-cluster singles and doubles model: The inclusion of disconnected triples
,”
J. Chem. Phys.
76
,
1910
1918
(
1982
).
63.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
64.
Y. S.
Lee
,
S. A.
Kucharski
, and
R. J.
Bartlett
, “
A coupled cluster approach with triple excitations
,”
J. Chem. Phys.
81
,
5906
5912
(
1984
).
65.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Tao
,
V. N.
Staroverov
,
G. E.
Scuseria
, and
G. I.
Csonka
, “
Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits
,”
J. Chem. Phys.
123
,
062201
(
2005
).
66.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
,
6615
6620
(
2008
).
67.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Assessment of a long-range corrected hybrid functional
,”
J. Chem. Phys.
125
,
234109
(
2006
).
68.
S.
Grimme
, “
Semiempirical hybrid density functional with perturbative second-order correlation
,”
J. Chem. Phys.
124
,
034108
(
2006
).
69.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
70.
Car-Parrinello molecular dynamics CPMD code, Copyright IBM Corp. 1990–2019,
MPI für Festkörperforschung Stuttgart
,
1997–2001
.
71.
T. D.
Kühne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borštnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Müller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
, “
CP2K: An electronic structure and molecular dynamics software package-quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
,
194103
(
2020
).
72.
X.
Zhou
,
T. A.
Wesolowski
,
G.
Tabacchi
,
E.
Fois
,
G.
Calzaferri
, and
A.
Devaux
, “
First-principles simulation of the absorption bands of fluorenone in zeolite L
,”
Phys. Chem. Chem. Phys.
15
,
159
167
(
2013
).
73.
R.
Arletti
,
E.
Fois
,
L.
Gigli
,
G.
Vezzalini
,
S.
Quartieri
, and
G.
Tabacchi
, “
Irreversible conversion of a water-ethanol solution into an organized two-dimensional network of alternating supramolecular units in a hydrophobic zeolite under pressure
,”
Angew. Chem., Int. Ed.
56
,
2105
2109
(
2017
).
74.
G.
Tabacchi
, “
Supramolecular organization in confined nanospaces
,”
ChemPhysChem
19
,
1249
1297
(
2018
).
75.
E.
Fois
,
G.
Tabacchi
, and
G.
Calzaferri
, “
Orientation and order of xanthene dyes in the one-dimensional channels of zeolite L: Bridging the gap between experimental data and molecular behavior
,”
J. Phys. Chem. C
116
,
16784
16799
(
2012
).
76.
G.
Tabacchi
,
E.
Fois
, and
G.
Calzaferri
, “
Structure of nanochannel entrances in stopcock-functionalized zeolite L composites
,”
Angew. Chem., Int. Ed.
54
,
11112
11116
(
2015
).
77.
G.
Tabacchi
,
G.
Calzaferri
, and
E.
Fois
, “
One-dimensional self-assembly of perylene-diimide dyes by unidirectional transit of zeolite channel openings
,”
Chem. Commun.
52
,
11195
11198
(
2016
).
78.
G. J.
Martyna
and
M. E.
Tuckerman
, “
A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters
,”
J. Chem. Phys.
110
,
2810
2821
(
1999
).
79.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, Gaussian09 Revision E.01,
Gaussian Inc.
,
Wallingford CT
,
2009
.
80.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
, “
NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
,”
Comput. Phys. Commun.
181
,
1477
1489
(
2010
).
81.
E.
Aprà
,
E. J.
Bylaska
,
W. A.
de Jong
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
M.
Valiev
,
H. J. J.
van Dam
,
Y.
Alexeev
,
J.
Anchell
,
V.
Anisimov
,
F. W.
Aquino
,
R.
Atta-Fynn
,
J.
Autschbach
,
N. P.
Bauman
,
J. C.
Becca
,
D. E.
Bernholdt
,
K.
Bhaskaran-Nair
,
S.
Bogatko
,
P.
Borowski
,
J.
Boschen
,
J.
Brabec
,
A.
Bruner
,
E.
Cauët
,
Y.
Chen
,
G. N.
Chuev
,
C. J.
Cramer
,
J.
Daily
,
M. J. O.
Deegan
,
T. H.
Dunning
,
M.
Dupuis
,
K. G.
Dyall
,
G. I.
Fann
,
S. A.
Fischer
,
A.
Fonari
,
H.
Früchtl
,
L.
Gagliardi
,
J.
Garza
,
N.
Gawande
,
S.
Ghosh
,
K.
Glaesemann
,
A. W.
Götz
,
J.
Hammond
,
V.
Helms
,
E. D.
Hermes
,
K.
Hirao
,
S.
Hirata
,
M.
Jacquelin
,
L.
Jensen
,
B. G.
Johnson
,
H.
Jónsson
,
R. A.
Kendall
,
M.
Klemm
,
R.
Kobayashi
,
V.
Konkov
,
S.
Krishnamoorthy
,
M.
Krishnan
,
Z.
Lin
,
R. D.
Lins
,
R. J.
Littlefield
,
A. J.
Logsdail
,
K.
Lopata
,
W.
Ma
,
A. V.
Marenich
,
J.
Martin del Campo
,
D.
Mejia-Rodriguez
,
J. E.
Moore
,
J. M.
Mullin
,
T.
Nakajima
,
D. R.
Nascimento
,
J. A.
Nichols
,
P. J.
Nichols
,
J.
Nieplocha
,
A.
Otero-De-La-Roza
,
B.
Palmer
,
A.
Panyala
,
T.
Pirojsirikul
,
B.
Peng
,
R.
Peverati
,
J.
Pittner
,
L.
Pollack
,
R. M.
Richard
,
P.
Sadayappan
,
G. C.
Schatz
,
W. A.
Shelton
,
D. W.
Silverstein
,
D. M. A.
Smith
,
T. A.
Soares
,
D.
Song
,
M.
Swart
,
H. L.
Taylor
,
G. S.
Thomas
,
V.
Tipparaju
,
D. G.
Truhlar
,
K.
Tsemekhman
,
T.
van Voorhis
,
Á.
Vázquez-Mayagoitia
,
P.
Verma
,
O.
Villa
,
A.
Vishnu
,
K. D.
Vogiatzis
,
D.
Wang
,
J. H.
Weare
,
M. J.
Williamson
,
T. L.
Windus
,
K.
Woliński
,
A. T.
Wong
,
Q.
Wu
,
C.
Yang
,
Q.
Yu
,
M.
Zacharias
,
Z.
Zhang
,
Y.
Zhao
, and
R. J.
Harrison
, “
NWChem: Past, present, and future
,”
J. Chem. Phys.
152
,
184102
(
2020
).
82.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
, “
New basis set exchange: An open, up-to-date resource for the molecular sciences community
,”
J. Chem. Inf. Model.
59
,
4814
4820
(
2019
).
83.
V.
Arjunan
,
R.
Anitha
,
S.
Thenmozhi
,
M. K.
Marchewka
, and
S.
Mohan
, “
Potential energy profile, structural, vibrational and reactivity descriptors of trans-2-methoxycinnamic acid by FTIR, FT-Raman and quantum chemical studies
,”
J. Mol. Struct.
1113
,
42
54
(
2016
).
84.
L.
Gigli
,
R.
Arletti
,
G.
Tabacchi
,
E.
Fois
,
J. G.
Vitillo
,
G.
Martra
,
G.
Agostini
,
S.
Quartieri
, and
G.
Vezzalini
, “
Close-packed dye molecules in zeolite channels self-assemble into supramolecular nanoladders
,”
J. Phys. Chem. C
118
,
15732
15743
(
2014
).
85.
M.
Fabbiani
,
G.
Confalonieri
,
S.
Morandi
,
R.
Arletti
,
S.
Quartieri
,
M.
Santoro
,
F.
Di Renzo
,
J.
Haines
,
R.
Fantini
,
G.
Tabacchi
,
E.
Fois
,
G.
Vezzalini
,
G.
Ricchiardi
, and
G.
Martra
, “
Steering polymer growth by molding nanochannels: 1,5-hexadiene polymerization in high silica mordenite
,”
Microporous Mesoporous Mater.
311
,
110728
(
2021
).
86.
L.
Gigli
,
R.
Arletti
,
G.
Tabacchi
,
M.
Fabbiani
,
J. G.
Vitillo
,
G.
Martra
,
A.
Devaux
,
I.
Miletto
,
S.
Quartieri
,
G.
Calzaferri
, and
E.
Fois
, “
Structure and host–guest interactions of perylene–diimide dyes in zeolite L nanochannels
,”
J. Phys. Chem. C
122
,
3401
3418
(
2018
).
87.
D. G. A.
Smith
,
L. A.
Burns
,
K.
Patkowski
, and
C. D.
Sherrill
, “
Revised damping parameters for the D3 dispersion correction to density functional theory
,”
J. Phys. Chem. Lett.
7
,
2197
2203
(
2016
).

Supplementary Material

You do not currently have access to this content.