Water trapped between MoS2 and graphene assumes a form of ice composed of two planar hexagonal layers with a non-tetrahedral geometry. Additional water does not wet these ice layers but forms three-dimensional droplets. Here, we have investigated the temperature induced dewetting dynamics of the confined ice and water droplets. The ice crystals gradually decrease in size with increasing substrate temperature and completely vanish at about 80 °C. Further heating to 100 °C induces changes in water droplet density, size, and shape through droplet coalescence and dissolution. However, even prolonged annealing at 100 °C does not completely dry the interface. The dewetting dynamics are controlled by the graphene cover. Thicker graphene flakes allow faster water diffusion as a consequence of the reduction of graphene’s conformity along the ice crystal’s edges, which leaves enough space for water molecules to diffuse along the ice edges and evaporate to the environment through defects in the graphene cover.

1.
D.
Takaiwa
,
I.
Hatano
,
K.
Koga
, and
H.
Tanaka
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
39
(
2008
).
2.
C.
Lee
,
Q.
Li
,
W.
Kalb
,
X. Z.
Liu
,
H.
Berger
,
R. W.
Carpick
, and
J.
Hone
,
Science
328
,
76
(
2010
).
3.
S.
Prakash
,
A.
Piruska
,
E. N.
Gatimu
,
P. W.
Bohn
,
J. V.
Sweedler
, and
M. A.
Shannon
,
IEEE Sens. J.
8
,
441
(
2008
).
4.
V. V.
Chaban
and
O. V.
Prezhdo
,
ACS Nano
5
,
5647
(
2011
).
5.
V.
Eroshenko
,
R.-C.
Regis
,
M.
Soulard
, and
J.
Patarin
,
J. Am. Chem. Soc.
123
,
8129
(
2001
).
6.
J.
Shim
,
C. H.
Lui
,
T. Y.
Ko
,
Y.-J.
Yu
,
P.
Kim
,
T. F.
Heinz
, and
S.
Ryu
,
Nano Lett.
12
,
648
(
2012
).
7.
Y.
Wang
and
Z.
Xu
,
ACS Appl. Mater. Interfaces
8
,
1970
(
2016
).
8.
H.
Lin
,
J. D.
Cojal González
,
N.
Severin
,
I. M.
Sokolov
, and
J. P.
Rabe
,
ACS Nano
14
,
11594
(
2020
).
9.
Z.
Li
,
S.
Li
,
H.-Y. T.
Chen
,
N.
Gao
,
K.
Schouteden
,
X.
Qiang
,
J.
Zhao
,
S.
Brems
,
C.
Huyghebaert
, and
C.
Van Haesendonck
,
J. Phys. Chem. Lett.
10
,
3998
(
2019
).
10.
N.
Severin
,
P.
Lange
,
I. M.
Sokolov
, and
J. P.
Rabe
,
Nano Lett.
12
,
774
(
2012
).
11.
G.
Algara-Siller
,
O.
Lehtinen
,
F. C.
Wang
,
R. R.
Nair
,
U.
Kaiser
,
H. A.
Wu
,
A. K.
Geim
, and
I. V.
Grigorieva
,
Nature
519
,
443
(
2015
).
12.
P.
Bampoulis
,
M. H.
Siekman
,
E. S.
Kooij
,
D.
Lohse
,
H. J. W.
Zandvliet
, and
B.
Poelsema
,
J. Chem. Phys.
143
,
034702
(
2015
).
13.
P.
Bampoulis
,
D.
Lohse
,
H. J. W.
Zandvliet
, and
B.
Poelsema
,
Appl. Phys. Lett.
108
,
011601
(
2016
).
14.
P.
Bampoulis
,
V. J.
Teernstra
,
D.
Lohse
,
H. J. W.
Zandvliet
, and
B.
Poelsema
,
J. Phys. Chem. C
120
,
27079
(
2016
).
15.
E.
Dollekamp
,
P.
Bampoulis
,
B.
Poelsema
,
H. J. W.
Zandvliet
, and
E. S.
Kooij
,
Langmuir
32
,
6582
(
2016
).
16.
K.
Sotthewes
,
P.
Bampoulis
,
H. J. W.
Zandvliet
,
D.
Lohse
, and
B.
Poelsema
,
ACS Nano
11
,
12723
(
2017
).
17.
P.
Bampoulis
,
K.
Sotthewes
,
E.
Dollekamp
, and
B.
Poelsema
,
Surf. Sci. Rep.
73
,
233
(
2018
).
18.
A.
Kalra
,
S.
Garde
, and
G.
Hummer
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
10175
(
2003
).
19.
M. H.
Köhler
and
C.
Gavazzoni
,
J. Phys. Chem. C
123
,
13968
(
2019
).
20.
K.
Xu
,
P.
Cao
, and
J. R.
Heath
,
Science
329
,
1188
(
2010
).
21.
P.
Cao
,
J. O.
Varghese
,
K.
Xu
, and
J. R.
Heath
,
Nano Lett.
12
,
1459
(
2012
).
22.
D. A.
Sanchez
,
Z.
Dai
,
P.
Wang
,
A.
Cantu-Chavez
,
C. J.
Brennan
,
R.
Huang
, and
N.
Lu
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
7884
(
2018
).
23.
X.
Cai
,
W. J.
Xie
,
Y.
Yang
,
Z.
Long
,
J.
Zhang
,
Z.
Qiao
,
L.
Yang
, and
Y. Q.
Gao
,
J. Chem. Phys.
150
,
124703
(
2019
).
24.
S.
Han
,
M. Y.
Choi
,
P.
Kumar
, and
H. E.
Stanley
,
Nat. Phys.
6
,
685
(
2010
).
25.
S.
Chakraborty
,
H.
Kumar
,
C.
Dasgupta
, and
P. K.
Maiti
,
Acc. Chem. Res.
50
,
2139
(
2017
).
26.
H.
Yoshida
,
V.
Kaiser
,
B.
Rotenberg
, and
L.
Bocquet
,
Nat. Commun.
9
,
1496
(
2018
).
27.
A.
Verdaguer
,
G. M.
Sacha
,
H.
Bluhm
, and
M.
Salmeron
,
Chem. Rev.
106
,
1478
(
2006
).
28.
P. J.
Feibelman
,
Phys. Today
63
(
2
),
34
(
2010
).
29.
G. A.
Kimmel
,
J.
Matthiesen
,
M.
Baer
,
C. J.
Mundy
,
N. G.
Petrik
,
R. S.
Smith
,
Z.
Dohnálek
, and
B. D.
Kay
,
J. Am. Chem. Soc.
131
,
12838
(
2009
).
30.
S.
Ruiz-Barragan
,
D.
Muñoz-Santiburcio
, and
D.
Marx
,
J. Phys. Chem. Lett.
10
,
329
(
2018
).
31.
N.
Si
,
T.
Shen
,
D.
Zhou
,
Q.
Tang
,
Y.
Jiang
,
Q.
Ji
,
H.
Huang
,
W.
Liu
,
S.
Li
, and
T.
Niu
,
ACS Nano
13
,
10622
(
2019
).
32.
B.
Cao
,
E.
Xu
, and
T.
Li
,
ACS Nano
13
,
4712
(
2019
).
33.
N.
Naguib
,
H.
Ye
,
Y.
Gogotsi
,
A. G.
Yazicioglu
,
C. M.
Megaridis
, and
M.
Yoshimura
,
Nano Lett.
4
,
2237
(
2004
).
34.
T. A.
Pascal
,
W. A.
Goddard
, and
Y.
Jung
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
11794
(
2011
).
35.
W.
Zhu
,
Y.
Zhu
,
L.
Wang
,
Q.
Zhu
,
W.-H.
Zhao
,
C.
Zhu
,
J.
Bai
,
J.
Yang
,
L.-F.
Yuan
,
H.
Wu
et al.,
J. Phys. Chem. C
122
,
6704
(
2018
).
36.
A. P. S.
Gaur
,
S.
Sahoo
,
M.
Ahmadi
,
S. P.
Dash
,
M. J.-F.
Guinel
, and
R. S.
Katiyar
,
Nano Lett.
14
,
4314
(
2014
).
37.
P.
Bampoulis
,
K.
Sotthewes
,
M. H.
Siekman
, and
H. J. W.
Zandvliet
,
ACS Appl. Mater. Interfaces
10
,
13218
(
2018
).
38.
D.
Stacchiola
,
J. B.
Park
,
P.
Liu
,
S.
Ma
,
F.
Yang
,
D. E.
Starr
,
E.
Muller
,
P.
Sutter
, and
J.
Hrbek
,
J. Phys. Chem. C
113
,
15102
(
2009
).
39.
K.
Koga
,
X. C.
Zeng
, and
H.
Tanaka
,
Phys. Rev. Lett.
79
,
5262
(
1997
).
40.
J.
Song
,
Q.
Li
,
X.
Wang
,
J.
Li
,
S.
Zhang
,
J.
Kjems
,
F.
Besenbacher
, and
M.
Dong
,
Nat. Commun.
5
,
4837
(
2013
).
41.
J. S.
Kim
,
J. S.
Choi
,
M. J.
Lee
,
B. H.
Park
,
D.
Bukhvalov
,
Y. W.
Son
,
D.
Yoon
,
H.
Cheong
,
J. N.
Yun
,
Y.
Jung
,
J. Y.
Park
, and
M.
Salmeron
,
Sci. Rep.
3
,
2309
(
2013
).
42.
O.
Ochedowski
,
B. K.
Bussmann
, and
M.
Schleberger
,
Sci. Rep.
4
,
6003
(
2014
).
You do not currently have access to this content.