The unique properties of aqueous electrolytes in ultrathin nanopores have drawn a great deal of attention in a variety of applications, such as power generation, water desalination, and disease diagnosis. Inside the nanopore, at the interface, properties of ions differ from those predicted by the classical ionic layering models (e.g., Gouy–Chapman electric double layer) when the thickness of the nanopore approaches the size of a single atom (e.g., nanopores in a single-layer graphene membrane). Here, using extensive molecular dynamics simulations, the structure and dynamics of aqueous ions inside nanopores are studied for different thicknesses, diameters, and surface charge densities of carbon-based nanopores [ultrathin graphene and finite-thickness carbon nanotubes (CNTs)]. The ion concentration and diffusion coefficient in ultrathin nanopores show no indication of the formation of a Stern layer (an immobile counter-ionic layer) as the counter-ions and nanopore atoms are weakly correlated in time compared to the strong correlation observed in thick nanopores. The weak correlation observed in ultrathin nanopores is indicative of a weak adsorption of counter-ions onto the surface compared to that of thick pores. The vanishing counter-ion adsorption (ion–wall correlation) in ultrathin nanopores leads to several orders of magnitude shorter ionic residence times (picoseconds) compared to the residence times in thick CNTs (seconds). The results of this study will help better understand the structure and dynamics of aqueous ions in ultrathin nanopores.

1.
K.
Liu
,
J.
Feng
,
A.
Kis
, and
A.
Radenovic
, “
Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation
,”
ACS Nano
8
,
2504
2511
(
2014
).
2.
F.
Fornasiero
 et al., “
Ion exclusion by sub-2-nm carbon nanotube pores
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
17250
17255
(
2008
).
3.
J. K.
Holt
 et al., “
Fast mass transport through sub-2-nanometer carbon nanotubes
,”
Science
312
,
1034
1037
(
2006
).
4.
D.
Cohen-Tanugi
and
J. C.
Grossman
, “
Water desalination across nanoporous graphene
,”
Nano Lett.
12
,
3602
3608
(
2012
).
5.
M.
Heiranian
,
A. B.
Farimani
, and
N. R.
Aluru
, “
Water desalination with a single-layer MoS2 nanopore
,”
Nat. Commun.
6
,
8616
(
2015
).
6.
S. P.
Surwade
 et al., “
Water desalination using nanoporous single-layer graphene
,”
Nat. Nanotechnol.
10
,
459
464
(
2015
).
7.
E. N.
Wang
and
R.
Karnik
, “
Water desalination graphene cleans up water
,”
Nat. Nanotechnol.
7
,
552
554
(
2012
).
8.
M.
Heiranian
and
N. R.
Aluru
, “
Nanofluidic transport theory with enhancement factors approaching one
,”
ACS Nano
14
,
272
281
(
2020
).
9.
M.
Heiranian
,
A.
Taqieddin
, and
N. R.
Aluru
, “
Revisiting Sampson’s theory for hydrodynamic transport in ultrathin nanopores
,”
Phys. Rev. Res.
2
,
043153
(
2020
).
10.
J.
Feng
 et al., “
Single-layer MoS2 nanopores as nanopower generators
,”
Nature
536
,
197
(
2016
).
11.
R. C.
Rollings
,
A. T.
Kuan
, and
J. A.
Golovchenko
, “
Ion selectivity of graphene nanopores
,”
Nat. Commun.
7
,
11408
(
2016
).
12.
A.
Barati Farimani
,
M.
Heiranian
,
K.
Min
, and
N. R.
Aluru
, “
Antibody subclass detection using graphene nanopores
,”
J. Phys. Chem. Lett.
8
,
1670
1676
(
2017
).
13.
A. B.
Farimani
,
M.
Heiranian
, and
N. R.
Aluru
, “
Identification of amino acids with sensitive nanoporous MoS2: Towards machine learning-based prediction
,”
npj 2D Mater. Appl.
2
,
1
9
(
2018
).
14.
S.
Joseph
and
N. R.
Aluru
, “
Why are carbon nanotubes fast transporters of water?
,”
Nano Lett.
8
,
452
458
(
2008
).
15.
M. E.
Suk
and
N. R.
Aluru
, “
Water transport through ultrathin graphene
,”
J. Phys. Chem. Lett.
1
,
1590
1594
(
2010
).
16.
B. M.
Venkatesan
and
R.
Bashir
, “
Nanopore sensors for nucleic acid analysis
,”
Nat. Nanotechnol.
6
,
615
624
(
2011
).
17.
R.
Wei
,
V.
Gatterdam
,
R.
Wieneke
,
R.
Tampé
, and
U.
Rant
, “
Stochastic sensing of proteins with receptor-modified solid-state nanopores
,”
Nat. Nanotechnol.
7
,
257
263
(
2012
).
18.
A. B.
Farimani
,
M.
Heiranian
, and
N. R.
Aluru
, “
Electromechanical signatures for DNA sequencing through a mechanosensitive nanopore
,”
J. Phys. Chem. Lett.
6
,
650
657
(
2015
).
19.
P.-A.
Cazade
,
R.
Hartkamp
, and
B.
Coasne
, “
Structure and dynamics of an electrolyte confined in charged nanopores
,”
J. Phys. Chem. C
118
,
5061
5072
(
2014
).
20.
R.
Karnik
 et al., “
Electrostatic control of ions and molecules in nanofluidic transistors
,”
Nano Lett.
5
,
943
948
(
2005
).
21.
C. R.
Buie
 et al., “
Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping
,”
J. Power Sources
161
,
191
202
(
2006
).
22.
G. S.
Kulkarni
and
Z.
Zhong
, “
Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor
,”
Nano Lett.
12
,
719
723
(
2012
).
23.
M. T.
Hwang
 et al., “
Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors
,”
Nat. Commun.
11
,
1543
(
2020
).
24.
L. L.
Zhang
and
X. S.
Zhao
, “
Carbon-based materials as supercapacitor electrodes
,”
Chem. Soc. Rev.
38
,
2520
2531
(
2009
).
25.
Y.
Zhai
 et al., “
Carbon materials for chemical capacitive energy storage
,”
Adv. Mater.
23
,
4828
4850
(
2011
).
26.
P.
Simon
and
Y.
Gogotsi
, “
Materials for electrochemical capacitors
,”
Nat. Mater.
7
,
845
854
(
2008
).
27.
H.
Helmholtz
, “
Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern mit anwendung auf die thierisch-elektrischen versuche
,”
Ann. Phys.
165
,
353
377
(
1853
).
28.
G. M.
Schmid
, “
Electrical double-layer at a metal-dilute electrolyte solution interface
,”
J. Am. Chem. Soc.
106
,
1176
(
1984
).
29.
O.
Stern
, “
Zur theorie der elektrolytischen doppelschicht
,”
Z. Elektrochem.
30
,
508
516
(
1924
).
30.
G.
Jiang
,
C.
Cheng
,
D.
Li
, and
J. Z.
Liu
, “
Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes
,”
Nano Res.
9
,
174
186
(
2016
).
31.
S.
Joseph
and
N. R.
Aluru
, “
Hierarchical multiscale simulation of electrokinetic transport in silica nanochannels at the point of zero charge
,”
Langmuir
22
,
9041
9051
(
2006
).
32.
R.
Qiao
and
N. R.
Aluru
, “
Charge inversion and flow reversal in a nanochannel electro-osmotic flow
,”
Phys. Rev. Lett.
92
,
198301
(
2004
).
33.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular-dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
34.
I. S.
Joung
and
T. E.
Cheatham
, “
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
,
9020
9041
(
2008
).
35.
Y.
Wu
and
N. R.
Aluru
, “
Graphitic carbon-water nonbonded interaction parameters
,”
J. Phys. Chem. B
117
,
8802
8813
(
2013
).
36.
A.
Sam
,
S. K.
Kannam
,
R.
Hartkamp
, and
S. P.
Sathian
, “
Water flow in carbon nanotubes: The effect of tube flexibility and thermostat
,”
J. Chem. Phys.
146
,
234701
(
2017
).
37.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
38.
S.
Nosé
, “
A unified formulation of the constant temperature molecular-dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
39.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).

Supplementary Material

You do not currently have access to this content.