We study the impact of the induced pressure fields on the water flow and salt rejection in nanopores produced in MoS2 membranes. We observe that the water permeability and the salt rejection are not impacted by the distance between the pores. This result contradicts the continuous fluid mechanics calculations in microfilters, which indicates the existence of hydrodynamic interactions between adjacent pores that increase the water mobility. Our results suggest that at this nanoscale, the hydrodynamic interactions do not affect the water mobility through nanopores.
REFERENCES
1.
UNESCO World Water Assessment Programme
, “Water and climate change
,” The United Nations World Water Development Report 2020, 2020
.2.
N.
Voutchkov
, “Energy use for membrane seawater desalination – current status and trends
,” Desalination
431
, 2
–14
(2018
).3.
P. J. J.
Alvarez
, C. K.
Chan
, M.
Elimelech
, N. J.
Halas
, and D.
Villagrán
, “Emerging opportunities for nanotechnology to enhance water security
,” Nat. Nanotechnol.
13
, 634
–641
(2018
).4.
J. R.
Werber
, C. O.
Osuji
, and M.
Elimelech
, “Materials for next-generation desalination and water purification membranes
,” Nat. Rev. Mater.
1
, 16018
(2016
).5.
D.
Cohen-Tanugi
and J. C.
Grossman
, “Nanoporous graphene as a reverse osmosis membrane: Recent insights from theory and simulation
,” Desalination
366
, 59
–70
(2015
), part of Special Issue: Energy and Desalination.6.
E. R.
Smith
, “A molecular dynamics simulation of the turbulent Couette minimal flow unit
,” Phys. Fluids
27
, 115105
(2015
).7.
W.
Humphrey
, A.
Dalke
, and K.
Schulten
, “VMD—Visual molecular dynamics
,” J. Mol. Graphics
14
, 33
–38
(1996
).8.
C.
Zhu
, H.
Li
, and S.
Meng
, “Transport behavior of water molecules through two-dimensional nanopores
,” J. Chem. Phys.
141
, 18C528
(2014
).9.
W.
Li
, Y.
Yang
, J. K.
Weber
, G.
Zhang
, and R.
Zhou
, “Tunable, strain-controlled nanoporous MoS2 filter for water desalination
,” ACS Nano
10
, 1829
–1835
(2016
).10.
M. H.
Köhler
, J. R.
Bordin
, and M. C.
Barbosa
, “2D nanoporous membrane for cation removal from water: Effects of ionic valence, membrane hydrophobicity, and pore size
,” J. Chem. Phys.
148
, 222804
(2018
).11.
J.
Kou
, J.
Yao
, L.
Wu
, X.
Zhou
, H.
Lu
, F.
Wu
, and J.
Fan
, “Nanoporous two-dimensional MoS2 membranes for fast saline solution purification
,” Phys. Chem. Chem. Phys.
18
, 22210
–22216
(2016
).12.
D.
Cohen-Tanugi
and J. C.
Grossman
, “Water desalination across nanoporous graphene
,” Nano Lett.
12
, 3602
–3608
(2012
).13.
M.
Akhavan
, J.
Schofield
, and S.
Jalili
, “Water transport and desalination through double-layer graphyne membranes
,” Phys. Chem. Chem. Phys.
20
, 13607
–13615
(2018
).14.
D.
Konatham
, J.
Yu
, T. A.
Ho
, and A.
Striolo
, “Simulation insights for graphene-based water desalination membranes
,” Langmuir
29
, 11884
–11897
(2013
).15.
D.
Cohen-Tanugi
, L.-C.
Lin
, and J. C.
Grossman
, “Multilayer nanoporous graphene membranes for water desalination
,” Nano Lett.
16
, 1027
–1033
(2016
).16.
M.
Heiranian
, A. B.
Farimani
, and N. R.
Aluru
, “Water desalination with a single-layer MoS2 nanopore
,” Nat. Commun.
6
, 8616
(2015
).17.
Z.
Cao
, V.
Liu
, and A.
Barati Farimani
, “Why is single-layer MoS2 a more energy efficient membrane for water desalination?
,” ACS Energy Lett.
5
, 2217
–2222
(2020
).18.
J. P. K.
Abal
, J. R.
Bordin
, and M. C.
Barbosa
, “Salt parameterization can drastically affect the results from classical atomistic simulations of water desalination by MoS2 nanopores
,” Phys. Chem. Chem. Phys.
22
, 11053
–11061
(2020
).19.
D.
Cohen-Tanugi
and J. C.
Grossman
, “Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination
,” J. Chem. Phys.
141
, 074704
(2014
).20.
D.
Jang
, J.-C.
Idrobo
, T.
Laoui
, and R.
Karnik
, “Water and solute transport governed by tunable pore size distributions in nanoporous graphene membranes
,” ACS Nano
11
, 10042
–10052
(2017
).21.
Z.
Wang
and B.
Mi
, “Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets
,” Environ. Sci. Technol.
51
, 8229
–8244
(2017
).22.
H.
Li
, T.-J.
Ko
, M.
Lee
, H.-S.
Chung
, S. S.
Han
, K. H.
Oh
, A.
Sadmani
, H.
Kang
, and Y.
Jung
, “Experimental realization of few layer two-dimensional MoS2 membranes of near atomic thickness for high efficiency water desalination
,” Nano Lett.
19
, 5194
–5204
(2019
).23.
Z.
Wang
, Q.
Tu
, S.
Zheng
, J. J.
Urban
, S.
Li
, and B.
Mi
, “Understanding the aqueous stability and filtration capability of MoS2 membranes
,” Nano Lett.
17
, 7289
–7298
(2017
).24.
W.
Hirunpinyopas
, E.
Prestat
, S. D.
Worrall
, S. J.
Haigh
, R. A. W.
Dryfe
, and M. A.
Bissett
, “Desalination and nanofiltration through functionalized laminar MoS2 membranes
,” ACS Nano
11
, 11082
–11090
(2017
).25.
C.
Liu
, Y.
Jin
, and Z.
Li
, “Water transport through graphene and MoS2 nanopores
,” J. Appl. Phys.
126
, 024901
(2019
).26.
K.
Kwac
, I.
Kim
, T. A.
Pascal
, W. A.
Goddard
, H. G.
Park
, and Y.
Jung
, “Multilayer two-dimensional water structure confined in MoS2
,” J. Phys. Chem. C
121
, 16021
–16028
(2017
).27.
M. E.
Suk
and N. R.
Aluru
, “Molecular and continuum hydrodynamics in graphene nanopores
,” RSC Adv.
3
, 9365
–9372
(2013
).28.
S. K.
Kannam
, P. J.
Daivis
, and B. D.
Todd
, “Modeling slip and flow enhancement of water in carbon nanotubes
,” MRS Bull.
42
, 283
–288
(2017
).29.
P.
Sahu
and S. M.
Ali
, “Breakdown of continuum model for water transport and desalination through ultrathin graphene nanopores: Insights from molecular dynamics simulations
,” Phys. Chem. Chem. Phys.
21
, 21389
–21406
(2019
).30.
K. H.
Jensen
, A. X. C. N.
Valente
, and H. A.
Stone
, “Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia
,” Phys. Fluids
26
, 052004
(2014
).31.
D.
Cohen-Tanugi
, R. K.
McGovern
, S. H.
Dave
, J. H.
Lienhard
, and J. C.
Grossman
, “Quantifying the potential of ultra-permeable membranes for water desalination
,” Energy Environ. Sci.
7
, 1134
–1141
(2014
).32.
M. R.
Hasan
and B.
Kim
, “Molecular transportation phenomena of simple liquids through a nanoporous graphene membrane
,” Phys. Rev. E
102
, 033110
(2020
).33.
R.
Fuentes-Azcatl
and M. C.
Barbosa
, “Sodium chloride, NaCl/ε: New force field
,” J. Phys. Chem. B
120
, 2460
–2470
(2016
).34.
R.
Fuentes-Azcatl
and M. C.
Barbosa
, “Thermodynamic and dynamic anomalous behavior in the TIP4P/ε water model
,” Physica A
444
, 86
–94
(2016
).35.
E. S.
Kadantsev
and P.
Hawrylak
, “Electronic structure of a single MoS2 monolayer
,” Solid State Commun.
152
, 909
–913
(2012
).36.
G.
Hummer
, J. C.
Rasaiah
, and J. P.
Noworyta
, “Water conduction through the hydrophobic channel of a carbon nanotube
,” Nature
414
, 188
–190
(2001
).37.
S.
Plimpton
, “Fast parallel algorithms for short-range molecular dynamics
,” J. Comput. Phys.
117
, 1
–19
(1995
).38.
E. M. V.
Hoek
, A. S.
Kim
, and M.
Elimelech
, “Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations
,” Environ. Eng. Sci.
19
, 357
–372
(2002
).39.
M.
Yang
, X.
Yang
, Q.
Wang
, K.
Wang
, X.
Fan
, W.
Liu
, X.
Liu
, J.
Liu
, and J.
Huang
, “Anomalous effects of water flow through charged nanochannel membranes
,” RSC Adv.
4
, 26729
–26737
(2014
).40.
L.
Hao
, J.
Su
, and H.
Guo
, “Water permeation through a charged channel
,” J. Phys. Chem. B
117
, 7685
–7694
(2013
).41.
Z.
Huang
, Y.
Zhang
, T.
Hayashida
, Z.
Ji
, Y.
He
, M.
Tsutsui
, X. S.
Miao
, and M.
Taniguchi
, “The impact of membrane surface charges on the ion transport in MoS2 nanopore power generators
,” Appl. Phys. Lett.
111
, 263104
(2017
).42.
H.
Gao
, Q.
Shi
, D.
Rao
, Y.
Zhang
, J.
Su
, Y.
Liu
, Y.
Wang
, K.
Deng
, and R.
Lu
, “Rational design and strain engineering of nanoporous boron nitride nanosheet membranes for water desalination
,” J. Phys. Chem. C
121
, 22105
–22113
(2017
).43.
J.-W.
Jiang
, “Graphene versus MoS2: A short review
,” Front. Phys.
10
, 287
–302
(2015
).© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.