This paper is a theoretical “proof of concept” on how the on-site first-order spin–orbit coupling (SOC) can generate giant Dzyaloshinskii–Moriya interactions in binuclear transition metal complexes. This effective interaction plays a key role in strongly correlated materials, skyrmions, multiferroics, and molecular magnets of promising use in quantum information science and computing. Despite this, its determination from both theory and experiment is still in its infancy and existing systems usually exhibit very tiny magnitudes. We derive analytical formulas that perfectly reproduce both the nature and the magnitude of the Dzyaloshinskii–Moriya interaction calculated using state-of-the-art ab initio calculations performed on model bicopper(II) complexes. We also study which geometrical structures/ligand-field forces would enable one to control the magnitude and the orientation of the Dzyaloshinskii–Moriya vector in order to guide future synthesis of molecules or materials. This article provides an understanding of its microscopic origin and proposes recipes to increase its magnitude. We show that (i) the on-site mixings of 3d orbitals rule the orientation and magnitude of this interaction, (ii) increased values can be obtained by choosing more covalent complexes, and (iii) huge values (∼1000 cm−1) and controlled orientations could be reached by approaching structures exhibiting on-site first-order SOC, i.e., displaying an “unquenched orbital momentum.”

1.
I. E
Dzyaloshinsky
, “
A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics
,”
J. Phys. Chem. Solids
4
(
4
),
241
255
(
1958
).
2.
T.
Moriya
, “
Anisotropic superexchange interaction and weak ferromagnetism
,”
Phys. Rev.
120
(
1
),
91
98
(
1960
).
3.
I. E.
Dzyaloshinskii
, “
Theory of helicoidal structures in antiferromagnets. I. Nonmetals
,”
J. Exp. Theor. Phys.
19
(
4
),
960
(
1964
).
4.
Y.
Ishikawa
,
K.
Tajima
,
D.
Bloch
, and
M.
Roth
, “
Helical spin structure in manganese silicide MnSi
,”
Solid State Commun.
19
(
6
),
525
528
(
1976
).
5.
S.
Haraldson
,
L.
Björn
,
O.
Beckman
, and
U.
Smith
, “
Magnetic resonance in cubic FeGe
,”
J. Magn. Reson.
8
(
3
),
271
273
(
1972
).
6.
P.
Bak
and
M. H.
Jensen
, “
Theory of helical magnetic structures and phase transitions in MnSi and FeGe
,”
J. Phys. C: Solid State Phys.
13
(
31
),
L881
(
1980
).
7.
M.
Kataoka
and
O.
Nakanishi
, “
Helical spin density wave due to antisymmetric exchange interaction
,”
J. Phys. Soc. Jpn.
50
(
12
),
3888
3896
(
1981
).
8.
A. N.
Bogdanov
and
D. A.
Yablonskii
, “
Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets
,”
J. Exp. Theor. Phys.
68
(
1
),
101
(
1989
).
9.
A.-O.
Mandru
,
O.
Y
ld
r
m
ııı,
R.
Tomasello
,
P.
Heistracher
,
M.
Penedo
,
A.
Giordano
,
D.
Suess
,
G.
Finocchio
, and
H. J.
Hug
, “
Coexistence of distinct skyrmion phases observed in hybrid ferromagnetic/ferrimagnetic multilayers
,”
Nat. Commun.
11
(
1
),
6365
(
2020
).
10.
X. Z.
Yu
,
Y.
Onose
,
N.
Kanazawa
,
J. H.
Park
,
J. H.
Han
,
Y.
Matsui
,
N.
Nagaosa
, and
Y.
Tokura
, “
Real-space observation of a two-dimensional skyrmion crystal
,”
Nature
465
(
7300
),
901
904
(
2010
).
11.
G.
Chen
,
A.
Mascaraque
,
H.
Jia
,
B.
Zimmermann
,
M.
Robertson
,
R. L.
Conte
,
M.
Hoffmann
,
M. A.
González Barrio
,
H.
Ding
,
R.
Wiesendanger
,
E. G.
Michel
,
S.
Blügel
,
A. K.
Schmid
, and
K.
Liu
, “
Large Dzyaloshinskii-Moriya interaction induced by chemisorbed oxygen on a ferromagnet surface
,”
Sci. Adv.
6
(
33
),
eaba4924
(
2020
).
12.
D.
Khomskii
, “
Classifying multiferroics: Mechanisms and effects
,”
Physics
2
,
20
(
2009
).
13.
T.
Lottermoser
and
D.
Meier
, “
A short history of multiferroics
,”
Phys. Sci. Rev.
6
,
1
(
2020
).
14.
A. F.
Devonshire
, “
Theory of ferroelectrics
,”
Adv. Phys.
3
(
10
),
85
130
(
1954
).
15.
J. F.
Scott
, “
Applications of modern ferroelectrics
,”
Science
315
(
5814
),
954
959
(
2007
).
16.
J. H.
Yang
,
Z. L.
Li
,
X. Z.
Lu
,
M.-H.
Whangbo
,
S.-H.
Wei
,
X. G.
Gong
, and
H. J.
Xiang
, “
Strong Dzyaloshinskii-Moriya interaction and origin of ferroelectricity in Cu2OSeO3
,”
Phys. Rev. Lett.
109
(
10
),
107203
(
2012
).
17.
H.
Schmid
, “
Multi-ferroic magnetoelectrics
,”
Ferroelectrics
162
(
1
),
317
338
(
1994
).
18.
A. D.
Buckingham
,
P.
Pyykkö
,
J. B.
Robert
, and
L.
Wiesenfeld
, “
Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited
,”
Mol. Phys.
46
(
1
),
177
182
(
1982
).
19.
L. F.
Chibotaru
,
L.
Ungur
,
C.
Aronica
,
H.
Elmoll
,
G.
Pilet
, and
D.
Luneau
, “
Structure, magnetism, and theoretical study of a mixed-valence CoII3CoIII4 heptanuclear wheel: Lack of SMM behavior despite negative magnetic anisotropy
,”
J. Am. Chem. Soc.
130
(
37
),
12445
12455
(
2008
).
20.
A.
Soncini
and
L. F.
Chibotaru
, “
Toroidal magnetic states in molecular wheels: Interplay between isotropic exchange interactions and local magnetic anisotropy
,”
Phys. Rev. B
77
(
22
),
220406
(
2008
).
21.
F.
Neese
, “
Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory
,”
J. Chem. Phys.
127
(
16
),
164112
(
2007
).
22.
D.
Ganyushin
and
F.
Neese
, “
First-principles calculations of zero-field splitting parameters
,”
J. Chem. Phys.
125
(
2
),
024103
(
2006
).
23.
E. R.
Sayfutyarova
and
G. K.-L.
Chan
, “
A state interaction spin-orbit coupling density matrix renormalization group method
,”
J. Chem. Phys.
144
(
23
),
234301
(
2016
).
24.
E.
Ruiz
,
J.
Cirera
,
J.
Cano
,
S.
Alvarez
,
C.
Loose
, and
J.
Kortus
, “
Can large magnetic anisotropy and high spin really coexist?
,”
Chem. Commun.
1
,
52
54
(
2007
).
25.
R.
Maurice
,
N.
Guihéry
,
R.
Bastardis
, and
C.
de Graaf
, “
Rigorous extraction of the anisotropic multispin Hamiltonian in bimetallic complexes from the exact electronic Hamiltonian
,”
J. Chem. Theory Comput.
6
(
1
),
55
65
(
2010
).
26.
R.
Maurice
,
R.
Bastardis
,
C.
de Graaf
,
N.
Suaud
,
T.
Mallah
, and
N.
Guihéry
, “
Universal theoretical approach to extract anisotropic spin Hamiltonians
,”
J. Chem. Theory Comput.
5
(
11
),
2977
2984
(
2009
).
27.
W.
Liu
,
Handbook of Relativistic Quantum Chemistry
(
Springer Berlin Heidelberg
,
New York, NY
,
2016
).
28.
R.
Maurice
,
K.
Sivalingam
,
D.
Ganyushin
,
N.
Guihéry
,
C.
de Graaf
, and
F.
Neese
, “
Theoretical determination of the zero-field splitting in copper acetate monohydrate
,”
Inorg. Chem.
50
(
13
),
6229
6236
(
2011
).
29.
R.
Maurice
,
C.
de Graaf
, and
N.
Guihéry
, “
Magnetic anisotropy in binuclear complexes in the weak-exchange limit: From the multispin to the giant-spin Hamiltonian
,”
Phys. Rev. B
81
(
21
),
214427
(
2010
).
30.
R.
Ruamps
,
R.
Maurice
,
C.
de Graaf
, and
N.
Guihéry
, “
Interplay between local anisotropies in binuclear complexes
,”
Inorg. Chem.
53
(
9
),
4508
4516
(
2014
).
31.
R.
Maurice
,
A. M.
Pradipto
,
N.
Guihéry
,
R.
Broer
, and
C.
de Graaf
, “
Antisymmetric magnetic interactions in oxo-bridged copper(II) bimetallic systems
,”
J. Chem. Theory Comput.
6
(
10
),
3092
3101
(
2010
).
32.
A.-M.
Pradipto
,
R.
Maurice
,
N.
Guihéry
,
C.
de Graaf
, and
R.
Broer
, “
First-principles study of magnetic interactions in cupric oxide
,”
Phys. Rev. B
85
(
1
),
014409
(
2012
).
33.
R.
Maurice
,
A.-M.
Pradipto
,
C.
de Graaf
, and
R.
Broer
, “
Magnetic interactions in LiCu2O2: Single-chain versus double-chain models
,”
Phys. Rev. B
86
(
2
),
024411
(
2012
).
34.
N. A.
Bogdanov
,
R.
Maurice
,
I.
Rousochatzakis
,
J.
van den Brink
, and
L.
Hozoi
, “
Magnetic state of pyrochlore Cd2Os2O7 emerging from strong competition of ligand distortions and longer-range crystalline anisotropy
,”
Phys. Rev. Lett.
110
(
12
),
127206
(
2013
).
35.
M.
Atanasov
,
P.
Comba
,
G. R.
Hanson
,
S.
Hausberg
,
S.
Helmle
, and
H.
Wadepohl
, “
Cyano-bridged homodinuclear copper(II) complexes
,”
Inorg. Chem.
50
(
15
),
6890
6901
(
2011
).
36.
A. S.
Moskvin
, “
Dzyaloshinsky-Moriya antisymmetric exchange coupling in cuprates: Oxygen effects
,”
J. Exp. Theor. Phys.
104
(
6
),
913
927
(
2007
).
37.
K. E.
Kauffmann
,
C. V.
Popescu
,
Y.
Dong
,
J. D.
Lipscomb
,
L.
Que
, and
E.
Münck
, “
Mössbauer evidence for antisymmetric exchange in a diferric synthetic complex and diferric methane monooxygenase
,”
J. Am. Chem. Soc.
120
(
34
),
8739
8746
(
1998
).
38.
J.
Yoon
,
L. M.
Mirica
,
T. D. P.
Stack
, and
E. I.
Solomon
, “
Spectroscopic demonstration of a large antisymmetric exchange contribution to the spin-frustrated ground state of a D3 symmetric hydroxy-bridged trinuclear Cu(II) complex: Ground-to-excited state superexchange pathways
,”
J. Am. Chem. Soc.
126
(
39
),
12586
12595
(
2004
).
39.
F.
Aquilante
,
L.
De Vico
,
N.
Ferré
,
G.
Ghigo
,
P. Å.
Malmqvist
,
P.
Neogrády
,
T. B.
Pedersen
,
M.
Pitoňák
,
M.
Reiher
,
B. O.
Roos
,
L.
Serrano-Andrés
,
M.
Urban
,
V.
Veryazov
, and
R.
Lindh
, “
MOLCAS 7: The next generation
,”
J. Comput. Chem.
31
(
1
),
224
247
(
2010
).
40.
G.
Karlström
,
R.
Lindh
,
P.-Å.
Malmqvist
,
B. O.
Roos
,
U.
Ryde
,
V.
Veryazov
,
P.-O.
Widmark
,
M.
Cossi
,
B.
Schimmelpfennig
,
P.
Neogrady
, and
L.
Seijo
, “
MOLCAS: A program package for computational chemistry
,”
Comput. Mater. Sci.
28
(
2
),
222
239
(
2003
).
41.
F.
Aquilante
,
J.
Autschbach
,
R. K.
Carlson
,
L. F.
Chibotaru
,
M. G.
Delcey
,
L.
De Vico
,
I.
Fdez. Galván
,
N.
Ferré
,
L. M.
Frutos
,
L.
Gagliardi
,
M.
Garavelli
,
A.
Giussani
,
C. E.
Hoyer
,
G.
Li Manni
,
H.
Lischka
,
D.
Ma
,
P. Å.
Malmqvist
,
T.
Müller
,
A.
Nenov
,
M.
Olivucci
,
T. B.
Pedersen
,
D.
Peng
,
F.
Plasser
,
B.
Pritchard
,
M.
Reiher
,
I.
Rivalta
,
I.
Schapiro
,
J.
Segarra-Martí
,
M.
Stenrup
,
D. G.
Truhlar
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
V. P.
Vysotskiy
,
O.
Weingart
,
F.
Zapata
, and
R.
Lindh
, “
MOLCAS 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table
,”
J. Comput. Chem.
37
(
5
),
506
541
(
2016
).
42.
P. A.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
, “
The restricted active space self-consistent-field method, implemented with a split graph unitary group approach
,”
J. Phys. Chem.
94
(
14
),
5477
5482
(
1990
).
43.
D.
Maynau
,
S.
Evangelisti
,
N.
Guihéry
,
C. J.
Calzado
, and
J.-P.
Malrieu
, “
Direct generation of local orbitals for multireference treatment and subsequent uses for the calculation of the correlation energy
,”
J. Chem. Phys.
116
(
23
),
10060
10068
(
2002
).
44.
N.
Ben Amor
,
F.
Bessac
,
S.
Hoyau
, and
D.
Maynau
, “
Direct selected multireference configuration interaction calculations for large systems using localized orbitals
,”
J. Chem. Phys.
135
,
014101-1
014101-14
(
2011
).
45.
P. Å.
Malmqvist
,
B. O.
Roos
, and
B.
Schimmelpfennig
, “
The restricted active space (RAS) state interaction approach with spin–orbit coupling
,”
Chem. Phys. Lett.
357
(
3-4
),
230
240
(
2002
).
46.
F.
Aquilante
,
T. B.
Pedersen
,
A.
Sánchez de Merás
, and
H.
Koch
, “
Fast noniterative orbital localization for large molecules
,”
J. Chem. Phys.
125
(
17
),
174101
(
2006
).
47.
T. M.
Dunn
, “
Spin-orbit coupling in the first and second transition series
,”
Trans. Faraday Soc.
57
,
1441
1444
(
1961
).
48.
R.
Ruamps
,
R.
Maurice
,
L.
Batchelor
,
M.
Boggio-Pasqua
,
R.
Guillot
,
A. L.
Barra
,
J.
Liu
,
E.-E.
Bendeif
,
S.
Pillet
,
S.
Hill
,
T.
Mallah
, and
N.
Guihéry
, “
Giant ising-type magnetic anisotropy in trigonal bipyramidal Ni(II) complexes: Experiment and theory
,”
J. Am. Chem. Soc.
135
(
8
),
3017
3026
(
2013
).
You do not currently have access to this content.