Evolutionary crystal structure prediction searches have been employed to explore the ternary Li–F–H system at 300 GPa. Metastable phases were uncovered within the static lattice approximation, with LiF3H2, LiF2H, Li3F4H, LiF4H4, Li2F3H, and LiF3H lying within 50 meV/atom of the 0 K convex hull. All of these phases contain HnFn+1 (n = 1, 2) anions and Li+ cations. Other structural motifs such as LiF slabs, H3+ molecules, and Fδ ions are present in some of the low enthalpy Li–F–H structures. The bonding within the HnFn+1 molecules, which may be bent or linear, symmetric or asymmetric, is analyzed. The five phases closest to the hull are insulators, while LiF3H is metallic and predicted to have a vanishingly small superconducting critical temperature. Li3F4H is predicted to be stable at zero pressure. This study lays the foundation for future investigations of the role of temperature and anharmonicity on the stability and properties of compounds and alloys in the Li–F–H ternary system.

1.
A.
Banos
,
N. J.
Harker
, and
T. B.
Scott
, “
A review of uranium corrosion by hydrogen and the formation of uranium hydride
,”
Corros. Sci.
136
,
129
147
(
2018
).
2.
M. B.
Ley
,
L. H.
Jepsen
,
Y.-S.
Lee
,
Y. W.
Cho
,
J. M.
Bellosta von Colbe
,
M.
Dornheim
,
M.
Rokni
,
J. O.
Jensen
,
M.
Sloth
,
Y.
Filinchuk
,
J. E.
Jørgensen
,
F.
Besenbacher
, and
T. R.
Jensen
, “
Complex hydrides for hydrogen storage–new perspectives
,”
Mater. Today
17
,
122
128
(
2014
).
3.
S.
Kim
,
H.
Oguchi
,
N.
Toyama
,
T.
Sato
,
S.
Takagi
,
T.
Otomo
,
D.
Arunkumar
,
N.
Kuwata
,
J.
Kawamura
, and
S.
Orimo
, “
A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries
,”
Nat. Commun.
10
,
1081
(
2019
).
4.
Y.
Song
, “
New perspectives on potential hydrogen storage materials using high pressure
,”
Phys. Chem. Chem. Phys.
15
,
14524
14547
(
2013
).
5.
V. V.
Struzhkin
,
B.
Militzer
,
W. L.
Mao
,
H.-k.
Mao
, and
R. J.
Hemley
, “
Hydrogen storage in molecular clathrates
,”
Chem. Rev.
107
,
4133
4151
(
2007
).
6.
T.
Bi
,
N.
Zarifi
,
T.
Terpstra
, and
E.
Zurek
, “
The search for superconductivity in high pressure hydrides
,” in
Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering
, edited by
J.
Reedijk
(
Elsevier
,
Waltham, MA
,
2019
), pp.
1
36
.
7.
E.
Zurek
and
T.
Bi
, “
High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective
,”
J. Chem. Phys.
150
,
050901
(
2019
).
8.
E.
Zurek
, “
Hydrides of the alkali metals and alkaline earth metals under pressure
,”
Comments Inorg. Chem.
37
,
78
98
(
2017
).
9.
A.
Shamp
and
E.
Zurek
, “
Superconductivity in hydrides doped with main group elements under pressure
,”
Nov. Supercond. Mater.
3
,
14
22
(
2017
).
10.
D.
Duan
,
Y.
Liu
,
F.
Tian
,
D.
Li
,
X.
Huang
,
Z.
Zhao
,
H.
Yu
,
B.
Liu
,
W.
Tian
, and
T.
Cui
, “
Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity
,”
Sci. Rep.
4
,
6968
(
2014
).
11.
H.
Liu
,
I. I.
Naumov
,
R.
Hoffmann
,
N. W.
Ashcroft
, and
R. J.
Hemley
, “
Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
6990
6995
(
2017
).
12.
F.
Peng
,
Y.
Sun
,
C. J.
Pickard
,
R. J.
Needs
,
Q.
Wu
, and
Y.
Ma
, “
Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity
,”
Phys. Rev. Lett.
119
,
107001
(
2017
).
13.
A. P.
Drozdov
,
M. I.
Eremets
,
I. A.
Troyan
,
V.
Ksenofontov
, and
S. I.
Shylin
, “
Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
,”
Nature
525
,
73
76
(
2015
).
14.
Z. M.
Geballe
,
H.
Liu
,
A. K.
Mishra
,
M.
Ahart
,
M.
Somayazulu
,
Y.
Meng
,
M.
Baldini
, and
R. J.
Hemley
, “
Synthesis and stability of lanthanum superhydrides
,”
Angew. Chem., Int. Ed.
57
,
688
692
(
2018
).
15.
M.
Somayazulu
,
M.
Ahart
,
A. K.
Mishra
,
Z. M.
Geballe
,
M.
Baldini
,
Y.
Meng
,
V. V.
Struzhkin
, and
R. J.
Hemley
, “
Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures
,”
Phys. Rev. Lett.
122
,
027001
(
2019
).
16.
A. P.
Drozdov
,
P. P.
Kong
,
V. S.
Minkov
,
S. P.
Besedin
,
M. A.
Kuzovnikov
,
S.
Mozaffari
,
L.
Balicas
,
F. F.
Balakirev
,
D. E.
Graf
,
V. B.
Prakapenka
,
E.
Greenberg
,
D. A.
Knyazev
,
M.
Tkacz
, and
M. I.
Eremets
, “
Superconductivity at 250 K in lanthanum hydride under high pressures
,”
Nature
569
,
528
531
(
2019
).
17.
Z.
Shao
,
D.
Duan
,
Y.
Ma
,
H.
Yu
,
H.
Song
,
H.
Xie
,
D.
Li
,
F.
Tian
,
B.
Liu
, and
T.
Cui
, “
Ternary superconducting cophosphorus hydrides stabilized via lithium
,”
npj. Comput. Mater.
5
,
1
8
(
2019
).
18.
X.
Li
,
Y.
Xie
,
Y.
Sun
,
P.
Huang
,
H.
Liu
,
C.
Chen
, and
Y.
Ma
, “
Chemically tuning stability and superconductivity of P–H compounds
,”
J. Phys. Chem. Lett.
11
,
935
939
(
2020
).
19.
Y.
Sun
,
J.
Lv
,
Y.
Xie
,
H.
Liu
, and
Y.
Ma
, “
Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure
,”
Phys. Rev. Lett.
123
,
097001
(
2019
).
20.
W.
Cui
,
T.
Bi
,
J.
Shi
,
Y.
Li
,
H.
Liu
,
E.
Zurek
, and
R. J.
Hemley
, “
Route to high-Tc superconductivity via CH4-intercalated H3S hydride perovskites
,”
Phys. Rev. B
101
,
134504
(
2020
).
21.
Y.
Sun
,
Y.
Tian
,
B.
Jiang
,
X.
Li
,
H.
Li
,
T.
Iitaka
,
X.
Zhong
, and
Y.
Xie
, “
Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation
,”
Phys. Rev. B
101
,
174102
(
2020
).
22.
B.
Liu
,
W.
Cui
,
J.
Shi
,
L.
Zhu
,
J.
Chen
,
S.
Lin
,
R.
Su
,
J.
Ma
,
K.
Yang
,
M.
Xu
,
J.
Hao
,
A. P.
Durajski
,
J.
Qi
,
Y.
Li
, and
Y.
Li
, “
Effect of covalent bonding on the superconducting critical temperature of the H–S–Se system
,”
Phys. Rev. B
98
,
174101
(
2018
).
23.
F.
Tian
,
D.
Li
,
D.
Duan
,
X.
Sha
,
Y.
Liu
,
T.
Yang
,
B.
Liu
, and
T.
Cui
, “
Predicted structures and superconductivity of hypothetical Mg–CH4 compounds under high pressures
,”
Mater. Res. Express
2
,
046001
(
2015
).
24.
F.
Fan
,
D. A.
Papaconstantopoulos
,
M. J.
Mehl
, and
B. M.
Klein
, “
High-temperature superconductivity at high pressures for H3SixP1−x, H3PxS1−x, and H3ClxS1−x
,”
J. Phys. Chem. Solids
99
,
105
110
(
2016
).
25.
Y.
Yan
,
T.
Bi
,
N.
Geng
,
X.
Wang
, and
E.
Zurek
, “
A metastable CaSH3 phase composed of HS honeycomb sheets that is superconducting under pressure
,”
J. Phys. Chem. Lett.
11
,
9629
9636
(
2020
).
26.
X.
Liang
,
A.
Bergara
,
L.
Wang
,
B.
Wen
,
Z.
Zhao
,
X.-F.
Zhou
,
J.
He
,
G.
Gao
, and
Y.
Tian
, “
Potential high-Tc superconductivity in CaYH12 under pressure
,”
Phys. Rev. B
99
,
100505(R)
(
2019
).
27.
E.
Snider
,
N.
Dasenbrock-Gammon
,
R.
McBride
,
M.
Debessai
,
H.
Vindana
,
K.
Vencatasamy
,
K. V.
Lawler
,
A.
Salamat
, and
R. P.
Dias
, “
Room-temperature superconductivity in a carbonaceous sulfur hydride
,”
Nature
586
,
373
377
(
2020
).
28.
L. E.
Kirsch
,
S. J.
Ali
,
D. E.
Fratanduono
,
R. G.
Kraus
,
D. G.
Braun
,
A.
Fernandez-Pañella
,
R. F.
Smith
,
J. M.
McNaney
, and
J. H.
Eggert
, “
Refractive index of lithium fluoride to 900 gigapascal and implications for dynamic equation of state measurements
,”
J. Appl. Phys.
125
,
175901
(
2019
).
29.
T.
Ao
,
M. D.
Knudson
,
J. R.
Asay
, and
J.-P.
Davis
, “
Strength of lithium fluoride under shockless compression to 114 GPa
,”
J. Appl. Phys.
106
,
103507
(
2009
).
30.
J.
Liu
,
L.
Dubrovinsky
,
T.
Boffa Ballaran
, and
W.
Crichton
, “
Equation of state and thermal expansivity of LiF and NaF
,”
High Pressure Res.
27
,
483
489
(
2007
).
31.
H.
Dong
,
S. M.
Dorfman
,
C. M.
Holl
,
Y.
Meng
,
V. B.
Prakapenka
,
D.
He
, and
T. S.
Duffy
, “
Compression of lithium fluoride to 92 GPa
,”
High Pressure Res.
34
,
39
48
(
2014
).
32.
D. E.
Fratanduono
,
T. R.
Boehly
,
M. A.
Barrios
,
D. D.
Meyerhofer
,
J. H.
Eggert
,
R. F.
Smith
,
D. G.
Hicks
,
P. M.
Celliers
,
D. G.
Braun
, and
G. W.
Collins
, “
Refractive index of lithium fluoride ramp compressed to 800 GPa
,”
J. Appl. Phys.
109
,
123521
(
2011
).
33.
L. M.
Barker
and
R. E.
Hollenbach
, “
Laser interferometer for measuring high velocities of any reflecting surface
,”
J. Appl. Phys.
43
,
4669
(
1972
).
34.
Q.
Liu
,
X.
Zhou
,
X.
Zeng
, and
S. N.
Luo
, “
Sound velocity, equation of state, temperature and melting of LiF single crystals under shock compression
,”
J. Appl. Phys.
117
,
045901
(
2015
).
35.
J.-P.
Davis
,
M. D.
Knudson
,
L.
Shulenburger
, and
S. D.
Crockett
, “
Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures
,”
J. Appl. Phys.
120
,
165901
(
2016
).
36.
P. C.
Myint
,
E. L.
Shi
,
S.
Hamel
,
H.
Cynn
,
Z.
Jenei
,
M. J.
Lipp
,
W. J.
Evans
, and
M. C.
Akin
, “
Two-phase equation of state for lithium fluoride
,”
J. Chem. Phys.
150
,
074506
(
2019
).
37.
J. L.
Wise
and
L. C.
Chhabildas
, “
Laser interferometer measurements of refractive index in shock-compressed materials
,” in
Shock Waves in Condensed Matter
(
Springer
,
1986
), pp.
441
454
.
38.
K. P.
Driver
and
B.
Militzer
, “
First-principles simulations of warm dense lithium fluoride
,”
Phys. Rev. E
95
,
043205
(
2017
).
39.
C. D.
Spataru
,
L.
Shulenburger
, and
L. X.
Benedict
, “
Ab initio many-body Green’s function calculations of optical properties of LiF at high pressures
,”
Phys. Rev. B
92
,
245117
(
2015
).
40.
N. A.
Smirnov
, “
Ab initio calculations of the thermodynamic properties of LiF crystal
,”
Phys. Rev. B
83
,
014109
(
2011
).
41.
Z.-H.
Sun
,
J.
Dong
, and
Y.-W.
Xia
, “
First-principles calculations of the structural, electronic, and optical properties of LiF up to 300 GPa
,”
Physica B
406
,
3660
3665
(
2011
).
42.
X.
Duan
,
C.
Zhang
,
Z.
Guan
,
L.
Sun
,
X.
Peng
,
H.
Liu
,
W.
Yang
,
Y.
Li
,
H.
Zhang
,
Q.
Ye
,
J.
Yang
,
S.
Jiang
, and
Z.
Wang
, “
Transparency measurement of lithium fluoride under laser-driven accelerating shock loading
,”
J. Appl. Phys.
128
,
015902
(
2020
).
43.
L.
He
,
M. J.
Tang
,
J.
Yin
,
X. M.
Zhou
,
W. J.
Zhu
,
F. S.
Liu
, and
D. W.
He
, “
Effects of the vacancy point-defect on the refractive index and equation of state (EOS) of LiF at high pressure: A first principles investigation
,”
Physica B
407
,
694
697
(
2012
).
44.
M. D.
Knudson
,
M. P.
Desjarlais
,
A.
Becker
,
R. W.
Lemke
,
K. R.
Cochrane
,
M. E.
Savage
,
D. E.
Bliss
,
T. R.
Mattsson
, and
R.
Redmer
, “
Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium
,”
Science
348
,
1455
1460
(
2015
).
45.
P. M.
Celliers
,
M.
Millot
,
S.
Brygoo
,
R. S.
McWilliams
,
D. E.
Fratanduono
,
J. R.
Rygg
,
A. F.
Goncharov
,
P.
Loubeyre
,
J. H.
Eggert
,
J. L.
Peterson
,
N. B.
Meezan
,
S.
Le Pape
,
G. W.
Collins
,
R.
Jeanloz
, and
R. J.
Hemley
, “
Insulator-metal transition in dense fluid deuterium
,”
Science
361
,
677
682
(
2018
).
46.
J. J.
Gilman
, “
Lithium dihydrogen fluoride—An approach to metallic hydrogen
,”
Phys. Rev. Lett.
26
,
546
(
1971
).
47.
J.
Lv
,
Y.
Wang
,
L.
Zhu
, and
Y.
Ma
, “
Predicted novel high-pressure phases of lithium
,”
Phys. Rev. Lett.
106
,
015503
(
2011
).
48.
C. J.
Pickard
and
R. J.
Needs
, “
Structure of phase III of solid hydrogen
,”
Nat. Phys.
3
,
473
476
(
2007
).
49.
M. A.
Olson
,
S.
Bhatia
,
P.
Larson
, and
B.
Militzer
, “
Prediction of chlorine and fluorine crystal structures at high pressure using symmetry driven structure search with geometric constraints
,”
J. Chem. Phys.
153
,
094111
(
2020
).
50.
M. J.
van Setten
,
V. A.
Popa
,
G. A.
de Wijs
, and
G.
Brocks
, “
Electronic structure and optical properties of lightweight metal hydrides
,”
Phys. Rev. B
75
,
035204
(
2007
).
51.
E.
Zurek
,
R.
Hoffmann
,
N. W.
Ashcroft
,
A. R.
Oganov
, and
A. O.
Lyakhov
, “
A little bit of lithium does a lot for hydrogen
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
17640
17643
(
2009
).
52.
D.
Duan
,
X.
Huang
,
F.
Tian
,
Y.
Liu
,
D.
Li
,
H.
Yu
,
B.
Liu
,
W.
Tian
, and
T.
Cui
, “
Predicted formation of H3+ in solid halogen polyhydrides at high pressures
,”
J. Phys. Chem. A
119
,
11059
11065
(
2015
).
53.
L.
Zhang
,
Y.
Wang
,
X.
Zhang
, and
Y.
Ma
, “
High-pressure phase transitions of solid HF, HCl, and HBr: An ab initio evolutionary study
,”
Phys. Rev. B
82
,
014108
(
2010
).
54.
D. C.
Lonie
and
E.
Zurek
, “
XtalOpt: An open-source evolutionary algorithm for crystal structure prediction
,”
Comput. Phys. Commun.
182
,
372
387
(
2011
).
55.
Z.
Falls
,
D. C.
Lonie
,
P.
Avery
,
A.
Shamp
, and
E.
Zurek
, “
XtalOpt version r9: An open-source evolutionary algorithm for crystal structure prediction
,”
Comput. Phys. Commun.
199
,
178
179
(
2016
).
56.
Z.
Falls
,
P.
Avery
,
X.
Wang
,
K. P.
Hilleke
, and
E.
Zurek
, “
The XtalOpt evolutionary algorithm for crystal structure prediction
,”
J. Phys. Chem. C
125
,
1601
1620
(
2020
).
57.
D. C.
Lonie
and
E.
Zurek
, “
Identifying duplicate crystal structures: XTALCOMP, an open-source solution
,”
Comput. Phys. Commun.
183
,
690
697
(
2012
).
58.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558(R)
(
1993
).
59.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
60.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
61.
R.
Dronskowski
and
P. E.
Blöchl
, “
Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations
,”
J. Phys. Chem.
97
,
8617
8624
(
1993
).
62.
S.
Maintz
,
V. L.
Deringer
,
A. L.
Tchougréeff
, and
R.
Dronskowski
, “
Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids
,”
J. Comput. Chem.
34
,
2557
2567
(
2013
).
63.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
, “
First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures
,”
Phys. Rev. B
78
,
134106
(
2008
).
64.
J. M.
Skelton
,
L. A.
Burton
,
A. J.
Jackson
,
F.
Oba
,
S. C.
Parker
, and
A.
Walsh
, “
Lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3: Vibrational spectra and thermal transport
,”
Phys. Chem. Chem. Phys.
19
,
12452
12465
(
2017
).
65.
J. M.
Skelton
, Phonopy-spectroscopy,
2020
, https://github.com/JMSkelton/Phonopy-Spectroscopy.
66.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
67.
M.
Methfessel
and
A. T.
Paxton
, “
High-precision sampling for Brillouin-zone integration in metals
,”
Phys. Rev. B
40
,
3616
(
1989
).
68.
P. B.
Allen
and
R. C.
Dynes
, “
Transition temperature of strong-coupled superconductors reanalyzed
,”
Phys. Rev. B
12
,
905
(
1975
).
69.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
, “
Chemistry with ADF
,”
J. Comput. Chem.
22
,
931
967
(
2001
).
70.
E. J.
Baerends
,
T.
Ziegler
,
A. J.
Atkins
,
J.
Autschbach
,
D.
Bashford
,
A.
Berces
,
F. M.
Bickelhaupt
,
C.
Bo
,
P. M.
Boerritger
,
L.
Cavallo
,
C.
Daul
,
D.
Chong
,
D.
Chulhai
,
L.
Deng
,
R. M.
Dickson
,
J. M.
Dieterich
,
D. E.
Ellis
,
M.
van Faassen
,
L.
Fan
,
T. H.
Fischer
,
A.
Förster
,
C.
Fonseca Guerra
,
M.
Franchini
,
A.
Ghysels
,
A.
Giammona
,
S. J. A.
van Gisbergen
,
A.
Goez
,
A. W.
Götz
,
J. A.
Groeneveld
,
O. V.
Gritsenko
,
M.
Grüning
,
S.
Gusarov
,
F. E.
Harris
,
P.
van den Hoek
,
Z.
Hu
,
C. R.
Jacob
,
H.
Jacobsen
,
L.
Jensen
,
L.
Joubert
,
J. W.
Kaminski
,
G.
van Kessel
,
C.
König
,
F.
Kootstra
,
A.
Kovalenko
,
M. V.
Krykunov
,
E.
van Lenthe
,
D. A.
McCormack
,
A.
Michalak
,
M.
Mitoraj
,
S. M.
Morton
,
J.
Neugebauer
,
V. P.
Nicu
,
L.
Noodleman
,
V. P.
Osinga
,
S.
Patchkovskii
,
M.
Pavanello
,
C. A.
Peeples
,
P. H. T.
Philipsen
,
D.
Post
,
C. C.
Pye
,
H.
Ramanantoanina
,
P.
Ramos
,
W.
Ravenek
,
M.
Reimann
,
J. I.
Rodríguez
,
P.
Ros
,
R.
Rüger
,
P. R. T.
Schipper
,
D.
Schlüns
,
H.
van Schoot
,
G.
Schreckenbach
,
J. S.
Seldenthuis
,
M.
Seth
,
J.
Snijders
,
M.
Solà
,
M.
Stener
,
M.
Swart
,
D.
Swerhone
,
V.
Tognetti
,
G.
te Velde
,
P.
Vernooijs
,
L.
Versluis
,
L.
Visscher
,
O.
Visser
,
F.
Wang
,
T. A.
Wesolowski
,
E. M.
van Wezenbeek
,
G.
Wiesenekker
,
S.
Wolff
,
T. K.
Woo
, and
A. L.
Yakovlev
,
ADF 2018, SCM, Theoretical Chemistry
(
Vrije Universiteit
,
Amsterdam, The Netherlands
,
2020
), http://www.scm.com.
71.
E.
Van Lenthe
and
E. J.
Baerends
, “
Optimized Slater-type basis sets for the elements 1–118
,”
J. Comput. Chem.
24
,
1142
1156
(
2003
).
72.
W.
Sun
,
S. T.
Dacek
,
S. P.
Ong
,
G.
Hautier
,
A.
Jain
,
W. D.
Richards
,
A. C.
Gamst
,
K. A.
Persson
, and
G.
Ceder
, “
The thermodynamic scale of inorganic crystalline metastability
,”
Sci. Adv.
2
,
e1600225
(
2016
).
73.
A. P.
Drozdov
,
M. I.
Eremets
, and
I. A.
Troyan
, “
Superconductivity above 100 K in PH3 at high pressures
,” arXiv:1508.06224 [cond-mat.supr-con] (
2015
).
74.
A.
Shamp
,
T.
Terpstra
,
T.
Bi
,
Z.
Falls
,
P.
Avery
, and
E.
Zurek
, “
Decomposition products of phosphine under pressure: PH2 stable and superconducting?
,”
J. Am. Chem. Soc.
138
,
1884
1892
(
2016
).
75.
J. A.
Flores-Livas
,
M.
Amsler
,
C.
Heil
,
A.
Sanna
,
L.
Boeri
,
G.
Profeta
,
C.
Wolverton
,
S.
Goedecker
, and
E. K. U.
Gross
, “
Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure
,”
Phys. Rev. B
93
,
020508(R)
(
2016
).
76.
T.
Bi
,
D. P.
Miller
,
A.
Shamp
, and
E.
Zurek
, “
Superconducting phases of phosphorus hydride under pressure: Stabilization by mobile molecular hydrogen
,”
Angew. Chem., Int. Ed.
56
,
10192
10195
(
2017
).
77.
A. K.
Mishra
,
T.
Muramatsu
,
H.
Liu
,
Z. M.
Geballe
,
M.
Somayazulu
,
M.
Ahart
,
M.
Baldini
,
Y.
Meng
,
E.
Zurek
, and
R. J.
Hemley
, “
New calcium hydrides with mixed atomic and molecular hydrogen
,”
J. Phys. Chem. C
122
,
19370
19378
(
2018
).
78.
I.
Errea
,
F.
Belli
,
L.
Monacelli
,
A.
Sanna
,
T.
Koretsune
,
T.
Tadano
,
R.
Bianco
,
M.
Calandra
,
R.
Arita
,
F.
Mauri
, and
J. A.
Flores-Livas
, “
Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride
,”
Nature
578
,
66
69
(
2020
).
79.
G. C.
Pimentel
, “
The bonding of trihalide and bifluoride ions by the molecular orbital method
,”
J. Chem. Phys.
19
,
446
(
1951
).
80.
S. J.
Grabowski
, “
[FHF]—The strongest hydrogen bond under the influence of external interactions
,”
Crystals
6
,
3
(
2016
).
81.
I.
Bernal
and
S. F.
Watkins
, “
Supramolecular fluoride and chloride anions
,”
C. R. Chim.
17
,
586
596
(
2014
).
82.
J. L.
Manson
,
H. I.
Southerland
,
B.
Twamley
,
R.
Rai
, and
J. L.
Musfeldt
, “
Bis(di-2-pyridyl-methanediol)copper(II) dihydrogentrifluoride: A structural and spectroscopic study of the H2F3 anion in a complex salt
,”
Dalton Trans.
2007
,
5655
5657
.
83.
S. I.
Troyanov
,
I. V.
Morozov
, and
E.
Kemnitz
, “
Crystal structure of cesium dihydrotrifluoride, CsH2F3. refinement of the crystal structures of NMe4HF2 and NMe4H2F3
,”
Z. Anorg. Allg. Chem.
631
,
1651
1654
(
2005
).
84.
D.
Mootz
and
D.
Boenigk
, “
Fluorides and fluoro acids. 12. Complex-anion homology and isomerism in the crystal structures of two potassium poly(hydrogen fluorides), KF·5HF and KF·3HF
,”
J. Am. Chem. Soc.
108
,
6634
6636
(
1986
).
85.
D.
Wiechert
,
D.
Mootz
,
R.
Franz
, and
G.
Siegemund
, “
Amine-poly(hydrogen fluoride) solid complexes: New studies of formation, crystal structures, and Hn1Fn ion diversity
,”
Chem. Eur. J.
4
,
1043
1047
(
1998
).
86.
T.
Oka
, “
Interstellar H3+.
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
12235
12242
(
2006
).
87.
Z.
Wang
,
H.
Wang
,
J. S.
Tse
,
T.
Iitaka
, and
Y.
Ma
, “
Stabilization of H3+ in the high pressure crystalline structure of HnCl (n = 2-7)
,”
Chem. Sci.
6
,
522
526
(
2015
).
88.
Q.
Zeng
,
S.
Yu
,
D.
Li
,
A. R.
Oganov
, and
G.
Frapper
, “
Emergence of novel hydrogen chlorides under high pressure
,”
Phys. Chem. Chem. Phys.
19
,
8236
8242
(
2017
).
89.
J. A.
Ibers
, “
Refinement of Peterson and Levy’s neutron diffraction data on KHF2
,”
J. Chem. Phys.
40
,
402
(
1964
).
90.
B. L.
McGaw
and
J. A.
Ibers
, “
Nature of the hydrogen bond in sodium acid fluoride
,”
J. Chem. Phys.
39
,
2677
(
1963
).
91.
B.
Dereka
,
Q.
Yu
,
N. H. C.
Lewis
,
W. B.
Carpenter
,
J. M.
Bowman
, and
A.
Tokmakoff
, “
Crossover from hydrogen to chemical bonding
,”
Science
371
,
160
164
(
2021
).
92.
M. W.
Johnson
,
E.
Sándor
, and
E.
Arzi
, “
The crystal structure of deuterium fluoride
,”
Acta Cryst.
B31
,
1998
2003
(
1975
).
93.
D. A.
Pinnick
,
A. I.
Katz
, and
R. C.
Hanson
, “
Pressure effects on Raman scattering from solid HF and DF
,”
Phys. Rev. B
39
,
8677
(
1989
).
94.
Z.
Wang
,
H.
Cui
,
J.
Hou
, and
X.
Dong
, “
Can HHe+ exist at high pressure: Exploration of high pressure induced HF–He compounds
,”
Geosci. Front.
12
,
1039
(
2020
).
95.
M.
Miao
,
Y.
Sun
,
E.
Zurek
, and
H.
Lin
, “
Chemistry under high pressure
,”
Nat. Rev. Chem.
4
,
508
527
(
2020
).
96.
B. M.
Riggleman
and
H. G.
Drickamer
, “
Approach to the metallic state as obtained from optical and electrical measurements
,”
J. Chem. Phys.
38
,
2721
(
1963
).
97.
T.
Kenichi
,
S.
Kyoko
,
F.
Hiroshi
, and
O.
Mitsuko
, “
Modulated structure of solid iodine during its molecular dissociation under high pressure
,”
Nature
423
,
971
974
(
2003
).
98.
K.
Shimizu
,
T.
Yamauchi
,
N.
Tamitani
,
N.
Takeshita
,
M.
Ishizuka
,
K.
Amaya
, and
S.
Endo
, “
The pressure-induced superconductivity of iodine
,”
J. Supercond.
7
,
921
924
(
1994
).
99.
R.
Kruh
,
K.
Fuwa
, and
T. E.
McEver
, “
The crystal structures of alkali metal bifluorides
,”
J. Am. Chem. Soc.
78
,
4256
4258
(
1956
).
100.
L. K.
Frevel
and
H. W.
Rinn
, “
The crystal structure of LiHF2
,”
Acta Cryst.
15
,
286
(
1962
).
101.
A. W.
Overhauser
, “
Crystal structure of lithium at 4.2 K
,”
Phys. Rev. Lett.
53
,
64
(
1984
).
102.
L.
Meyer
,
C. S.
Barrett
, and
S. C.
Greer
, “
Crystal structure of α-fluorine
,”
J. Chem. Phys.
49
,
1902
1907
(
1968
).
103.
J.
Thewlis
, “
Unit-cell dimensions of lithium fluoride made from Li6 and Li7
,”
Acta Cryst.
8
,
36
38
(
1955
).
104.
See http://hdl.handle.net/10477/79221 for Center for Computational Research at SUNY Buffalo; accessed 5 July 2020.

Supplementary Material

You do not currently have access to this content.