We present a study of four monoterpene isomers (limonene, γ-terpinene, terpinolene, and α-pinene) that are prevalent in indoor environments and their interaction with the hydroxylated SiO2 surface, a model for the glass surface, by combining infrared spectroscopy and computational simulations. These isomers are molecularly adsorbed onto SiO2 through π-hydrogen bonds with surface hydroxyl groups. However, experimental results suggest that the strength of interaction of these compounds with the SiO2 surface varies for each isomer, with α-pinene showing the weakest interaction. This observation is supported by molecular dynamics simulations that α-pinene adsorbed on the SiO2 surface has lower free energy of desorption and a lower mass accommodation coefficient compared to other isomers. Additionally, our ab initio molecular dynamics simulations show lower π-hydrogen bonding probabilities for α-pinene compared to the other three constitutional isomers. Importantly, these interactions are most likely present for a range of other systems involving organic compounds and solid surfaces and, thus, provide a thorough framework for comparing the interactions of organic molecules on indoor relevant surfaces.

1.
N. E.
Klepeis
,
W. C.
Nelson
,
W. R.
Ott
,
J. P.
Robinson
,
A. M.
Tsang
,
P.
Switzer
,
J. V.
Behar
,
S. C.
Hern
, and
W. H.
Engelmann
, “
The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants
,”
J. Exposure Anal. Environ. Epidemiol.
11
(
3
),
231
252
(
2001
).
2.
A.
Colombo
,
M.
De Bortoli
,
E.
Pecchio
,
H.
Schauenburg
,
H.
Schlitt
, and
H.
Vissers
, “
Chamber testing of organic emission from building and furnishing materials
,”
Sci. Total Environ.
91
(
C
),
237
249
(
1990
).
3.
S. K.
Brown
,
M. R.
Sim
,
M. J.
Abramson
, and
C. N.
Gray
, “
Concentrations of volatile organic compounds in indoor air—A review
,”
Indoor Air
4
(
2
),
123
134
(
1994
).
4.
T.
Schettler
,
N. E.
Skakkebæk
,
D.
De Kretser
, and
H.
Leffers
, “
Human exposure to phthalates via consumer products
,”
Int. J. Androl.
29
(
1
),
134
139
(
2006
).
5.
C.
Yu
and
D.
Crump
, “
A review of the emission of VOCs from polymeric materials used in buildings
,”
Build. Environ.
33
(
6
),
357
374
(
1998
).
6.
K. L.
Abdullahi
,
J. M.
Delgado-Saborit
, and
R. M.
Harrison
, “
Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review
,”
Atmos. Environ.
71
,
260
294
(
2013
).
7.
F.
Klein
,
N. J.
Farren
,
C.
Bozzetti
,
K. R.
Daellenbach
,
D.
Kilic
,
N. K.
Kumar
,
S. M.
Pieber
,
J. G.
Slowik
,
R. N.
Tuthill
,
J. F.
Hamilton
,
U.
Baltensperger
,
A. S. H.
Prévôt
, and
I.
El Haddad
, “
Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential
,”
Sci. Rep.
6
(
1
),
36623
(
2016
).
8.
Y.
Liu
,
P. K.
Misztal
,
J.
Xiong
,
Y.
Tian
,
C.
Arata
,
R. J.
Weber
,
W. W.
Nazaroff
, and
A. H.
Goldstein
, “
Characterizing sources and emissions of volatile organic compounds in a Northern California residence using space- and time-resolved measurements
,”
Indoor Air
29
(
4
),
630
644
(
2019
).
9.
J. P. D.
Abbatt
and
C.
Wang
, “
The atmospheric chemistry of indoor environments
,”
Environ. Sci.: Processes Impacts
22
(
1
),
25
48
(
2020
).
10.
M. S.
Waring
and
J. R.
Wells
, “
Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources
,”
Atmos. Environ.
106
,
382
391
(
2015
).
11.
C. J.
Weschler
and
N.
Carslaw
, “
Indoor chemistry
,”
Environ. Sci. Technol.
52
(
5
),
2419
2428
(
2018
).
12.
B. C.
Singer
,
A. T.
Hodgson
,
T.
Hotchi
,
K. Y.
Ming
,
R. G.
Sextro
,
E. E.
Wood
, and
N. J.
Brown
, “
Sorption of organic gases in residential rooms
,”
Atmos. Environ.
41
(
15
),
3251
3265
(
2007
).
13.
A.
Manuja
,
J.
Ritchie
,
K.
Buch
,
Y.
Wu
,
C. M. A.
Eichler
,
J. C.
Little
, and
L. C.
Marr
, “
Total surface area in indoor environments
,”
Environ. Sci.: Processes Impacts
21
(
8
),
1384
1392
(
2019
).
14.
G.
Morrison
, “
Interfacial chemistry in indoor environments
,”
Environ. Sci. Technol.
42
,
3495
3499
(
2008
).
15.
W. W.
Nazaroff
and
A. H.
Goldstein
, “
Indoor chemistry: Research opportunities and challenges
,”
Indoor Air
25
(
4
),
357
361
(
2015
).
16.
A. P.
Ault
,
V. H.
Grassian
,
N.
Carslaw
,
D. B.
Collins
,
H.
Destaillats
,
D. J.
Donaldson
,
D. K.
Farmer
,
J. L.
Jimenez
,
V. F.
McNeill
,
G. C.
Morrison
,
R. E.
O’Brien
,
M.
Shiraiwa
,
M. E.
Vance
,
J. R.
Wells
, and
W.
Xiong
, “
Indoor surface chemistry: Developing a molecular picture of reactions on indoor interfaces
,”
Chem
6
,
3203
3218
(
2020
).
17.
T.
Wainman
,
J.
Zhang
,
C. J.
Weschler
, and
P. J.
Lioy
, “
Ozone and limonene in indoor air: A source of submicron particle exposure
,”
Environ. Health Perspect.
108
(
12
),
1139
1145
(
2000
).
18.
W. W.
Nazaroff
and
C. J.
Weschler
, “
Cleaning products and air fresheners: Exposure to primary and secondary air pollutants
,”
Atmos. Environ.
38
(
18
),
2841
2865
(
2004
).
19.
G.
Tamas
,
C. J.
Weschler
,
J.
Toftum
, and
P. O.
Fanger
, “
Influence of ozone-limonene reactions on perceived air quality
,”
Indoor Air
16
(
3
),
168
178
(
2006
).
20.
C. J.
Weschler
and
H. C.
Shields
, “
Indoor ozone/terpene reactions as a source of indoor particles
,”
Atmos. Environ.
33
(
15
),
2301
2312
(
1999
).
21.
M.
Springs
,
J. R.
Wells
, and
G. C.
Morrison
, “
Reaction rates of ozone and terpenes adsorbed to model indoor surfaces
,”
Indoor Air
21
(
4
),
319
327
(
2011
).
22.
S.
Rossignol
,
C.
Rio
,
A.
Ustache
,
S.
Fable
,
J.
Nicolle
,
A.
Même
,
B.
D’Anna
,
M.
Nicolas
,
E.
Leoz
, and
L.
Chiappini
, “
The use of a housecleaning product in an indoor environment leading to oxygenated polar compounds and SOA formation: Gas and particulate phase chemical characterization
,”
Atmos. Environ.
75
,
196
205
(
2013
).
23.
M. S.
Waring
and
J. A.
Siegel
, “
Indoor secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed d-limonene
,”
Environ. Sci. Technol.
47
(
12
),
6341
6348
(
2013
).
24.
N.
Carslaw
, “
A mechanistic study of limonene oxidation products and pathways following cleaning activities
,”
Atmos. Environ.
80
,
507
513
(
2013
).
25.
G.
Sarwar
and
R.
Corsi
, “
The effects of ozone/limonene reactions on indoor secondary organic aerosols
,”
Atmos. Environ.
41
(
5
),
959
973
(
2007
).
26.
F.
Thevenet
,
M.
Verriele
,
P.
Harb
,
S.
Thlaijeh
,
R.
Brun
,
M.
Nicolas
, and
S.
Angulo-Milhem
, “
The indoor fate of terpenes: Quantification of the limonene uptake by materials
,”
Build. Environ.
188
,
107433
(
2020
).
27.
Y.
Fang
,
P. S. J.
Lakey
,
S.
Riahi
,
A. T.
McDonald
,
M.
Shrestha
,
D. J.
Tobias
,
M.
Shiraiwa
, and
V. H.
Grassian
, “
A molecular picture of surface interactions of organic compounds on prevalent indoor surfaces: Limonene adsorption on SiO2
,”
Chem. Sci.
10
(
10
),
2906
2914
(
2019
).
28.
Y.
Fang
,
S.
Riahi
,
A. T.
McDonald
,
M.
Shrestha
,
D. J.
Tobias
, and
V. H.
Grassian
, “
What is the driving force behind the adsorption of hydrophobic molecules on hydrophilic surfaces?
,”
J. Phys. Chem. Lett.
10
(
3
),
468
473
(
2019
).
29.
A. T.
Hodgson
and
H.
Levin
, “
Volatile organic compounds in indoor air: A review of concentrations measured in North American since 1990
,” Report No. LBNL-51715,
Lawrence Berkeley National Laboratory
,
Berkeley, CA
,
2003
.
30.
S.
Król
,
J.
Namieśnik
, and
B.
Zabiegała
, “
α-pinene, 3-carene and d-limonene in indoor air of polish apartments: The impact on air quality and human exposure
,”
Sci. Total Environ.
468-469
,
985
995
(
2014
).
31.
E.
Uhde
and
N.
Schulz
, “
Impact of room fragrance products on indoor air quality
,”
Atmos. Environ.
106
,
492
502
(
2015
).
32.
M.
Witter
,
T.
Berndt
,
O.
Böge
,
F.
Stratmann
, and
J.
Heintzenberg
, “
Gas-phase ozonolysis: Rate coefficients for a series of terpenes and rate coefficients and OH yields for 2-methyl-2-butene and 2,3-dimethyl-2-butene
,”
Int. J. Chem. Kinet.
34
(
6
),
394
403
(
2002
).
33.
V. H.
Grassian
, “
Heterogeneous uptake and reaction of nitrogen oxides and volatile organic compounds on the surface of atmospheric particles including oxides, carbonates, soot and mineral dust: Implications for the chemical balance of the troposphere
,”
Int. Rev. Phys. Chem.
20
(
3
),
467
548
(
2001
).
34.
L. T.
Zhuravlev
, “
The surface chemistry of amorphous silica Zhuravlev model
,”
Colloids Surf., A
173
(
1-3
),
1
38
(
2000
).
35.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
36.
H. C.
Andersen
, “
Rattle: A ‘velocity’ version of the shake algorithm for molecular dynamics calculations
,”
J. Comput. Phys.
52
(
1
),
24
34
(
1983
).
37.
R. E.
Isele-Holder
,
W.
Mitchell
, and
A. E.
Ismail
, “
Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions
,”
J. Chem. Phys.
137
(
17
),
174107
174113
(
2012
).
38.
D. J.
Evans
and
B. L.
Holian
, “
The Nose–Hoover thermostat
,”
J. Chem. Phys.
83
(
8
),
4069
4074
(
1985
).
39.
F.-Y.
Lin
and
A. D.
MacKerell
, “
Force fields for small molecules
,”
Methods Mol. Biol. Simul.
2022
,
21
54
(
2019
).
40.
C. G.
Mayne
,
J.
Saam
,
K.
Schulten
,
E.
Tajkhorshid
, and
J. C.
Gumbart
, “
Rapid parameterization of small molecules using the force field toolkit
,”
J. Comput. Chem.
34
(
32
),
2757
2770
(
2013
).
41.
G. M.
Torrie
and
J. P.
Valleau
, “
Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
,”
J. Comput. Phys.
23
(
2
),
187
199
(
1977
).
42.
A.
Grossfield
, “
WHAM: The weighted histogram method
,” version 2.0.9.1 see for http://membrane.urmc.rochester.edu/?page_id=126; accessed March 11, 2020.
43.
T. D.
Kühne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borštnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Müller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
, “
CP2K: An electronic structure and molecular dynamics software package-quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
(
19
),
194103
194147
(
2020
).
44.
M.
Thomas
,
M.
Brehm
,
R.
Fligg
,
P.
Vöhringer
, and
B.
Kirchner
, “
Computing vibrational spectra from ab initio molecular dynamics
,”
Phys. Chem. Chem. Phys.
15
(
18
),
6608
6622
(
2013
).
45.
M.
Brehm
and
B.
Kirchner
, “
TRAVIS-A free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories
,”
J. Chem. Inf. Model.
51
(
8
),
2007
2023
(
2011
).
46.
R. T.
O’Connor
and
L. A.
Goldblatt
, “
Correlation of ultraviolet and infrared spectra of terpene hydrocarbons
,”
Anal. Chem.
26
(
11
),
1726
1737
(
1954
).
47.
K. M.
Marzec
,
I.
Reva
,
R.
Fausto
, and
L. M.
Proniewicz
, “
Comparative matrix isolation infrared spectroscopy study of 1, 3- and 1, 4-diene monoterpenes (α-phellandrene and γ-terpinene)
,”
J. Phys. Chem. A
115
(
17
),
4342
4353
(
2011
).
48.
M. A.
Upshur
,
M. M.
Vega
,
A. G.
,
H. M.
Chase
,
Y.
Zhang
,
A.
Tuladhar
,
Z. A.
Chase
,
L.
Fu
,
C. J.
Ebben
,
Z.
Wang
,
S. T.
Martin
,
F. M.
Geiger
, and
R. J.
Thomson
, “
Synthesis and surface spectroscopy of alpha-pinene isotopologues and their corresponding secondary organic material
,”
Chem. Sci.
10
(
36
),
8390
8398
(
2019
).
49.
Y.
Liu
,
H. M.
Chase
, and
F. M.
Geiger
, “
Partially (resp. fully) reversible adsorption of monoterpenes (resp. alkanes and cycloalkanes) to fused silica
,”
J. Chem. Phys.
150
(
7
),
074701
074708
(
2019
).
50.
H. M.
Chase
,
J.
Ho
,
M. A.
Upshur
,
R. J.
Thomson
,
V. S.
Batista
, and
F. M.
Geiger
, “
Unanticipated stickiness of α-pinene
,”
J. Phys. Chem. A
121
(
17
),
3239
3246
(
2017
).
51.
J.
Ho
,
B. T.
Psciuk
,
H. M.
Chase
,
B.
Rudshteyn
,
M. A.
Upshur
,
L.
Fu
,
R. J.
Thomson
,
H.-F.
Wang
,
F. M.
Geiger
, and
V. S.
Batista
, “
Sum frequency generation spectroscopy and molecular dynamics simulations reveal a rotationally fluid adsorption state of α-pinene on silica
,”
J. Phys. Chem. C
120
(
23
),
12578
12589
(
2016
).

Supplementary Material

You do not currently have access to this content.