Inspired by recent experimental observations of anomalously large decay lengths in concentrated electrolytes, we revisit the Restricted Primitive Model (RPM) for an aqueous electrolyte. We investigate the asymptotic decay lengths of the one-body ionic density profiles for the RPM in contact with a planar electrode using classical Density Functional Theory (DFT) and compare these with the decay lengths of the corresponding two-body correlation functions in bulk systems, obtained in previous Integral Equation Theory (IET) studies. Extensive Molecular Dynamics (MD) simulations are employed to complement the DFT and IET predictions. Our DFT calculations incorporate electrostatic interactions between the ions using three different (existing) approaches: one is based on the simplest mean-field treatment of Coulomb interactions (MFC), while the other two employ the Mean Spherical Approximation (MSA). The MSAc invokes only the MSA bulk direct correlation function, whereas the MSAu also incorporates the MSA bulk internal energy. Although MSAu yields profiles that are in excellent agreement with MD simulations in the near field, in the far field, we observe that the decay lengths are consistent between IET, MSAc, and MD simulations, whereas those from MFC and MSAu deviate significantly. Using DFT, we calculated the solvation force, which relates directly to surface force experiments. We find that its decay length is neither qualitatively nor quantitatively close to the large decay lengths measured in experiments and conclude that the latter cannot be accounted for by the primitive model. The anomalously large decay lengths found in surface force measurements require an explanation that lies beyond primitive models.

1.
H.
Helmholtz
, “
Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern mit anwendung auf die thierisch-elektrischen versuche
,”
Ann. Phys.
165
,
211
233
(
1853
).
2.
M.
Gouy
, “
Sur la constitution de la charge électrique à la surface d’un électrolyte
,”
J. Phys. Theor. Appl.
9
,
457
468
(
1910
).
3.
D. L.
Chapman
, “
LI. A contribution to the theory of electrocapillarity
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
25
,
475
481
(
1913
).
4.
P.
Debye
and
E.
Hückel
, “
Zur theorie der elektrolyte. I. Gefrierpunktserniedrigung und verwandte erscheinungen
,”
Phys. Z.
24
,
305
(
1923
).
5.
M. A.
Gebbie
,
H. A.
Dobbs
,
M.
Valtiner
, and
J. N.
Israelachvili
, “
Long-range electrostatic screening in ionic liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
7432
7437
(
2015
).
6.
H.-W.
Cheng
,
P.
Stock
,
B.
Moeremans
,
T.
Baimpos
,
X.
Banquy
,
F. U.
Renner
, and
M.
Valtiner
, “
Characterizing the influence of water on charging and layering at electrified ionic-liquid/solid interfaces
,”
Adv. Mater. Interfaces
2
,
1500159
(
2015
).
7.
R. M.
Espinosa-Marzal
,
A.
Arcifa
,
A.
Rossi
, and
N. D.
Spencer
, “
Microslips to ‘avalanches’ in confined, molecular layers of ionic liquids
,”
J. Phys. Chem. Lett.
5
,
179
184
(
2014
).
8.
A. M.
Smith
,
A. A.
Lee
, and
S.
Perkin
, “
The electrostatic screening length in concentrated electrolytes increases with concentration
,”
J. Phys. Chem. Lett.
7
,
2157
2163
(
2016
).
9.
M. A.
Gebbie
,
A. M.
Smith
,
H. A.
Dobbs
,
A. A.
Lee
,
G. G.
Warr
,
X.
Banquy
,
M.
Valtiner
,
M. W.
Rutland
,
J. N.
Israelachvili
,
S.
Perkin
, and
R.
Atkin
, “
Long range electrostatic forces in ionic liquids
,”
Chem. Commun.
53
,
1214
1224
(
2017
).
10.
P.
Simon
and
Y.
Gogotsi
, “
Materials for electrochemical capacitors
,”
Nat. Mater.
7
,
845
854
(
2008
).
11.
C.
Merlet
,
B.
Rotenberg
,
P. A.
Madden
,
P.-L.
Taberna
,
P.
Simon
,
Y.
Gogotsi
, and
M.
Salanne
, “
On the molecular origin of supercapacitance in nanoporous carbon electrodes
,”
Nat. Mater.
11
,
306
310
(
2012
).
12.
D. T.
Limmer
,
C.
Merlet
,
M.
Salanne
,
D.
Chandler
,
P. A.
Madden
,
R.
van Roij
, and
B.
Rotenberg
, “
Charge fluctuations in nanoscale capacitors
,”
Phys. Rev. Lett.
111
,
106102
(
2013
).
13.
A.
Härtel
,
M.
Janssen
,
D.
Weingarth
,
V.
Presser
, and
R.
van Roij
, “
Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors
,”
Energy Environ. Sci.
8
,
2396
2401
(
2015
).
14.
D.
Brogioli
, “
Extracting renewable energy from a salinity difference using a capacitor
,”
Phys. Rev. Lett.
103
,
058501
(
2009
).
15.
M.
Janssen
and
R.
van Roij
, “
Reversible heating in electric double layer capacitors
,”
Phys. Rev. Lett.
118
,
096001
(
2017
).
16.
S.
Porada
,
R.
Zhao
,
A.
van der Wal
,
V.
Presser
, and
P. M.
Biesheuvel
, “
Review on the science and technology of water desalination by capacitive deionization
,”
Prog. Mater. Sci.
58
,
1388
1442
(
2013
).
17.
P.
Attard
, “
Asymptotic analysis of primitive model electrolytes and the electrical double layer
,”
Phys. Rev. E
48
,
3604
3621
(
1993
).
18.
J.
Ennis
,
R.
Kjellander
, and
D. J.
Mitchell
, “
Dressed ion theory for bulk symmetric electrolytes in the restricted primitive model
,”
J. Chem. Phys.
102
,
975
991
(
1995
).
19.
R. L.
de Carvalho
and
R.
Evans
, “
The decay of correlations in ionic fluids
,”
Mol. Phys.
83
,
619
654
(
1994
).
20.
N. D.
Mermin
, “
Thermal properties of the inhomogeneous electron gas
,”
Phys. Rev.
137
,
A1441
A1443
(
1965
).
21.
R.
Evans
, “
The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids
,”
Adv. Phys.
28
,
143
200
(
1979
).
22.
J.-P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
, 4th ed. (
Academic Press
,
New York, NY
,
2013
).
23.
L.
Ornstein
and
F.
Zernike
, “
Accidental deviations of density and opalescence at the critical point of a single substance
,”
KNAW
17
,
793
806
(
1914
).
24.
R.
Evans
,
M.
Oettel
,
R.
Roth
, and
G.
Kahl
, “
New developments in classical density functional theory
,”
J. Phys.: Condens. Matter
28
,
240401
(
2016
).
25.
A.
Härtel
, “
Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it
,”
J. Phys.: Condens. Matter
29
,
423002
(
2017
).
26.
L.
Blum
, “
Solution of a model for the solvent-electrolyte interactions in the mean spherical approximation
,”
J. Chem. Phys.
61
,
2129
2133
(
1974
).
27.
L.
Blum
, “
Mean spherical model for asymmetric electrolytes
,”
Mol. Phys.
30
,
1529
1535
(
1975
).
28.
L.
Blum
and
J. S.
Hoeye
, “
Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function
,”
J. Phys. Chem.
81
,
1311
1316
(
1977
).
29.
K.
Hiroike
, “
Supplement to Blum’s theory for asymmetric electrolytes
,”
Mol. Phys.
33
,
1195
1198
(
1977
).
30.
E.
Waisman
and
J. L.
Lebowitz
, “
Exact solution of an integral equation for the structure of a primitive model of electrolytes
,”
J. Chem. Phys.
52
,
4307
4309
(
1970
).
31.
E.
Waisman
and
J. L.
Lebowitz
, “
Mean spherical model integral equation for charged hard spheres I. Method of solution
,”
J. Chem. Phys.
56
,
3086
3093
(
1972
).
32.
E.
Waisman
and
J. L.
Lebowitz
, “
Mean spherical model integral equation for charged hard spheres. II. Results
,”
J. Chem. Phys.
56
,
3093
3099
(
1972
).
33.
R.
Roth
and
D.
Gillespie
, “
Shells of charge: A density functional theory for charged hard spheres
,”
J. Phys.: Condens. Matter
28
,
244006
(
2016
).
34.
R.
Roth
, “
Fundamental measure theory for hard-sphere mixtures: A review
,”
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
35.
L.
Mier-y-Teran
,
S. H.
Suh
,
H. S.
White
, and
H. T.
Davis
, “
A nonlocal free-energy density-functional approximation for the electrical double layer
,”
J. Chem. Phys.
92
,
5087
5098
(
1990
).
36.
A.
Voukadinova
,
M.
Valiskó
, and
D.
Gillespie
, “
Assessing the accuracy of three classical density functional theories of the electrical double layer
,”
Phys. Rev. E
98
,
012116
(
2018
).
37.
L.
Blum
and
Y.
Rosenfeld
, “
Relation between the free energy and the direct correlation function in the mean spherical approximation
,”
J. Stat. Phys.
63
,
1177
1190
(
1991
).
38.
G.
Orkoulas
and
A. Z.
Panagiotopoulos
, “
Free energy and phase equilibria for the restricted primitive model of ionic fluids from Monte Carlo simulations
,”
J. Chem. Phys.
101
,
1452
1459
(
1994
).
39.
C.
Holm
,
T.
Ertl
,
S.
Schmauder
,
J.
Kästner
, and
J.
Gross
, “
Particle methods in natural science and engineering
,”
Eur. Phys. J. Special Topics
227
,
1493
1499
(
2019
).
40.
R.
Hockney
and
J.
Eastwood
,
Computer Simulation Using Particles
(
CRC Press
,
1988
).
41.
H. C.
Andersen
,
J. D.
Weeks
, and
D.
Chandler
, “
Relationship between the hard-sphere fluid and fluids with realistic repulsive forces
,”
Phys. Rev. A
4
,
1597
1607
(
1971
).
42.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
43.
A.
Arnold
,
J.
de Joannis
, and
C.
Holm
, “
Electrostatics in periodic slab geometries. I
,”
J. Chem. Phys.
117
,
2496
2502
(
2002
);
J.
de Joannis
,
A.
Arnold
, and
C.
Holm
, “
Electrostatics in periodic slab geometries. II
,”
J. Chem. Phys.
117
,
2503
2512
(
2002
).
44.
J.
Ulander
and
R.
Kjellander
, “
The decay of pair correlation functions in ionic fluids: A dressed ion theory analysis of Monte Carlo simulations
,”
J. Chem. Phys.
114
,
4893
4904
(
2001
).
45.
P.
González-Mozuelos
,
G. I.
Guerrero-García
, and
M.
Olvera de la Cruz
, “
An exact method to obtain effective electrostatic interactions from computer simulations: The case of effective charge amplification
,”
J. Chem. Phys.
139
,
064709
(
2013
).
46.
R.
Evans
,
J. R.
Henderson
,
D. C.
Hoyle
,
A. O.
Parry
, and
Z. A.
Sabeur
, “
Asymptotic decay of liquid structure: Oscillatory liquid-vapour density profiles and the Fisher-Widom line
,”
Mol. Phys.
80
,
755
775
(
1993
).
47.
P.
Attard
,
D. R.
Bérard
,
C. P.
Ursenbach
, and
G. N.
Patey
, “
Interaction free energy between planar walls in dense fluids: An Ornstein-Zernike approach with results for hard-sphere, Lennard-Jones, and dipolar systems
,”
Phys. Rev. A
44
,
8224
8234
(
1991
).
48.
P.
Attard
,
C. P.
Ursenbach
, and
G. N.
Patey
, “
Long-range attractions between solutes in near-critical fluids
,”
Phys. Rev. A
45
,
7621
7623
(
1992
).
49.
R.
Evans
,
R. J. F.
Leote de Carvalho
,
J. R.
Henderson
, and
D. C.
Hoyle
, “
Asymptotic decay of correlations in liquids and their mixtures
,”
J. Chem. Phys.
100
,
591
603
(
1994
).
50.
R.
Kjellander
and
D. J.
Mitchell
, “
An exact but linear and Poisson—Boltzmann-like theory for electrolytes and colloid dispersions in the primitive model
,”
Chem. Phys. Lett.
200
,
76
82
(
1992
).
51.
M. E.
Fisher
and
B.
Widom
, “
Decay of correlations in linear systems
,”
J. Chem. Phys.
50
,
3756
3772
(
1969
).
52.
M.
Dijkstra
and
R.
Evans
, “
A simulation study of the decay of the pair correlation function in simple fluids
,”
J. Chem. Phys.
112
,
1449
1456
(
2000
).
53.
J. G.
Kirkwood
, “
Statistical mechanics of liquid solutions
,”
Chem. Rev.
19
,
275
307
(
1936
).
54.
R.
Kjellander
and
D. J.
Mitchell
, “
Dressed-ion theory for electrolyte solutions: A Debye–Hückel-like reformulation of the exact theory for the primitive model
,”
J. Chem. Phys.
101
,
603
626
(
1994
).
55.
C. W.
Outhwaite
and
V. C. L.
Hutson
, “
The mean spherical model for charged hard spheres
,”
Mol. Phys.
29
,
1521
1531
(
1975
).
56.
C. W.
Outhwaite
and
L.
Bhuiyan
, “
Comments on the linear modified Poisson-Boltzmann equation in electrolyte solution theory
,”
Condens. Matter Phys.
22
,
23801
(
2019
).
57.
R.
Evans
and
U.
Marini Bettolo Marconi
, “
Phase equilibria and solvation forces for fluids confined between parallel walls
,”
J. Chem. Phys.
86
,
7138
7148
(
1987
).
58.
A. A.
Lee
,
C. S.
Perez-Martinez
,
A. M.
Smith
, and
S.
Perkin
, “
Scaling analysis of the screening length in concentrated electrolytes
,”
Phys. Rev. Lett.
119
,
026002
(
2017
).
59.
A. A.
Lee
,
C. S.
Perez-Martinez
,
A. M.
Smith
, and
S.
Perkin
, “
Underscreening in concentrated electrolytes
,”
Faraday Discuss.
199
,
239
259
(
2017
).
60.
F.
Coupette
,
A. A.
Lee
, and
A.
Härtel
, “
Screening lengths in ionic fluids
,”
Phys. Rev. Lett.
121
,
075501
(
2018
).
61.
B.
Rotenberg
,
O.
Bernard
, and
J.-P.
Hansen
, “
Underscreening in ionic liquids: A first principles analysis
,”
J. Phys. Condens. Matter
30
,
054005
(
2018
).
62.
G.
Feng
,
M.
Chen
,
S.
Bi
,
Z. A. H.
Goodwin
,
E. B.
Postnikov
,
N.
Brilliantov
,
M.
Urbakh
, and
A. A.
Kornyshev
, “
Free and bound states of ions in ionic liquids, conductivity, and underscreening paradox
,”
Phys. Rev. X
9
,
021024
(
2019
).
63.
R.
Kjellander
, “
A multiple decay-length extension of the Debye–Hückel theory: To achieve high accuracy also for concentrated solutions and explain under-screening in dilute symmetric electrolytes
,”
Phys. Chem. Chem. Phys.
22
,
23952
23985
(
2020
).
64.
A. M.
Smith
,
A. A.
Lee
, and
S.
Perkin
, “
Switching the structural force in ionic liquid-solvent mixtures by varying composition
,”
Phys. Rev. Lett.
118
,
096002
(
2017
).
65.
A.
Zeidler
, “
The structure of molten sodium chloride
,” in
Ordering in Amorphous Binary Systems
, Ph.D. thesis (
University of Bath
,
2009
), Chap. 3.
66.
P.
Keblinski
,
J.
Eggebrecht
,
D.
Wolf
, and
S. R.
Phillpot
, “
Molecular dynamics study of screening in ionic fluids
,”
J. Chem. Phys.
113
,
282
291
(
2000
).
67.
S. W.
Coles
,
C.
Park
,
R.
Nikam
,
M.
Kanduč
,
J.
Dzubiella
, and
B.
Rotenberg
, “
Correlation length in concentrated electrolytes: Insights from all-atom molecular dynamics simulations
,”
J. Phys. Chem. B
124
,
1778
1786
(
2020
).
68.
J.
Zeman
,
S.
Kondrat
, and
C.
Holm
, “
Bulk ionic screening lengths from extremely large-scale molecular dynamics simulations
,”
Chem. Commun.
56
,
15635
15638
(
2020
).
69.
R.
Kjellander
, “
The intimate relationship between the dielectric response and the decay of intermolecular correlations and surface forces in electrolytes
,”
Soft Matter
15
,
5866
5895
(
2019
).
70.
R.
Kjellander
, “
Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions
,”
J. Chem. Phys.
145
,
124503
(
2016
).
71.
A.
Maciołek
,
A.
Drzewinski
, and
P.
Bryk
, “
Solvation force for long-ranged wall-fluid potentials
,”
J. Chem. Phys.
120
,
1921
1934
(
2004
).
72.
J. K.
Percus
, “
Approximation methods in classical statistical mechanics
,”
Phys. Rev. Lett.
8
,
462
463
(
1962
).
73.
M. C.
Walters
,
P.
Subramanian
,
A. J.
Archer
, and
R.
Evans
, “
Structural crossover in a model fluid exhibiting two length scales: Repercussions for quasicrystal formation
,”
Phys. Rev. E
98
,
012606
(
2018
).
74.
D.
Stopper
,
H.
Hansen-Goos
,
R.
Roth
, and
R.
Evans
, “
On the decay of the pair correlation function and the line of vanishing excess isothermal compressibility in simple fluids
,”
J. Chem. Phys.
151
,
014501
(
2019
).
75.
R.
Evans
and
R. J. F. L.
de Carvalho
, “
Decay of correlations in bulk fluids and at interfaces: A density-functional perspective
,” in
Chemical Applications of Density-Functional Theory
(
American Chemical Society
,
1996
), Chap. 12, pp.
166
184
.
You do not currently have access to this content.