The photoreduction of a Keggin type lacunary tungstomolybdophosphate, α-(Bu4N)4[H3PW9Mo2O39], in acetonitrile, led to the formation of a monoreduced lacunary heteropoly anion, or a one electron reduced “heteropoly blue” species, whereby the added “blue” electron was captured by the molybdenum atoms. The magnetic properties and behavior of the “blue” electron were studied by a modified Evans nuclear magnetic resonance method (small downshift of the 31P signal) and variable-temperature electron paramagnetic resonance (g = 1.936 for MoV). The intermolecular exchange of the “blue” electron was limited by a geometrical factor, which requires the contact between Mo caps to exchange it between the heteropoly couple. The intramolecular exchange of the “blue” electron between Mo atoms was rather fast (5.3 × 109 s−1), with a rate of more than six orders of magnitude larger than the intermolecular exchange rate. Density functional theory was used to determine the most prevalent protonation sites in the mixed lacunary isomers with the aim of studying the intramolecular electron transfer pathway in the isolated [H4PW9Mo2O39]4− species. The singly occupied molecular orbital (SOMO) is essentially localized in one of the two nonequivalent molybdenum sites. The kinetics of the intramolecular electron exchange equilibrium MoV + MoVI → MoVI + MoV between the two molybdenum atoms bridged by an oxygen atom was found to be fast in agreement with the experimental result. The transition state is of mixed-valence type, with the SOMO delocalized over the Mo—O—Mo group. Spectroscopic parameters were found to be in fair agreement with experimental results.

1.
M. T.
Pope
,
Heteropoly and Isopoly Oxometalates
(
Springer-Verlag
,
1983
).
2.
J. F.
Keggin
,
Nature
131
,
908
(
1933
).
3.
H. N.
Miras
,
J.
Yan
,
D.-L.
Long
, and
L.
Cronin
,
Chem. Soc. Rev.
41
,
7403
(
2012
).
4.
A.
Müller
and
J.
Döring
,
Angew. Chem., Int. Ed.
27
(
12
),
1721
(
1988
).
5.
M.
Nyman
,
Dalton Trans.
40
(
32
),
8049
(
2011
).
6.
Y.
Hayashi
,
Coord. Chem. Rev.
255
,
2270
(
2011
).
7.
N. V.
Izarova
,
M. T.
Pope
, and
U.
Kortz
,
Angew. Chem., Int. Ed.
51
,
9492
(
2012
).
8.
G.
Johansson
,
Acta Chem. Scand.
14
,
771
(
1960
).
9.
S. M.
Bradley
,
R. A.
Kydd
, and
R.
Yamdagni
,
J. Chem. Soc., Dalton Trans.
1990
,
413
.
10.
G. E.
Sigmon
,
B.
Weaver
,
K.-A.
Kubatko
, and
P. C.
Burns
,
Inorg. Chem.
48
,
10907
(
2009
).
11.
R.
Akid
and
J. R.
Darwent
,
J. Chem. Soc. Dalton Trans.
1985
,
395
;
A.
Ioannidis
and
E.
Papaconstantinou
,
Inorg. Chem.
24
,
439
(
1985
);
T.
Yamase
and
R.
Watanabe
,
J. Chem. Soc. Dalton Trans.
1986
,
1669
;
M. T.
Pope
and
A.
Müller
,
Angew. Chem., Int. Ed.
30
,
34
(
1991
);
M.
Fournier
and
H.
Mourad
,
J. Mol. Catal. A: Chem.
114
,
53
(
1996
).
12.
A.
Mylonas
and
E.
Papaconstantinou
,
J. Photochem. Photobiol., A: Chem.
94
,
77
(
1996
);
H.
Einaga
and
M.
Misono
,
Bull. Chem. Soc. Jpn.
70
,
1551
(
1997
).
13.
M. G.
Egusquiza
,
G. P.
Romanelli
,
C. I.
Cabello
,
I. L.
Botto
, and
H. J.
Thomas
,
Catal. Commun.
9
,
45
(
2008
).
14.
M.
Tabatabaee
,
S.
Hashemian
,
M.
Roozbeh
,
M.
Roozbeh
, and
M.
Mirjalili
,
Res. Chem. Intermed.
41
,
231
(
2015
).
15.
A.
Mylonas
,
E.
Papaconstantinou
, and
V.
Roussis
,
Polyhedron
15
,
3211
(
1996
).
16.
A. M.
Bond
,
J. C.
Eklund
,
V.
Tedesco
,
T.
Vu
, and
A. G.
Wedd
,
Inorg. Chem.
37
,
2366
(
1998
).
17.
B. S.
Jaynes
and
C. L.
Hill
,
J. Am. Chem. Soc.
117
,
4704
(
1995
).
18.
R. I.
Maksimovskaya
,
Polyhedron
65
,
54
(
2013
).
19.
J. J.
Walsh
,
A. M.
Bond
,
R. J.
Forster
, and
T. E.
Keyes
,
Coord. Chem. Rev.
306
,
217
(
2016
).
20.
N.
Li
,
J.
Liu
,
B.-X.
Dong
, and
Y.-Q.
Lan
,
Angew. Chem., Int. Ed.
59
,
20713
(
2020
).
21.
C. J.
Calzado
,
J. M.
Clemente-Juan
,
E.
Coronado
,
A.
Gaita-Ariño
, and
N.
Suaud
,
Inorg. Chem.
47
,
5889
(
2008
).
22.
J.-i.
Nambu
,
T.
Ueda
,
S.-X.
Guo
,
J. F.
Boas
, and
A. M.
Bond
,
Dalton Trans.
39
,
7364
(
2010
).
23.
X.
Xu
,
W.
Ju
,
D.
Yan
,
N.
Jian
, and
Y.
Xu
,
J. Coord. Chem.
66
,
2669
(
2013
).
24.
P.
Sami
and
K.
Rajasekaran
,
J. Chem. Sci.
121
(
2
),
155
(
2009
).
25.
R.
Neumann
and
M.
Dahan
,
J. Chem. Soc. Chem. Commun.
1995
,
171
.
26.
M.
Kozik
,
N.
Casan-Pastor
,
C. F.
Hammer
, and
L. C. W.
Baker
,
J. Am. Chem. Soc.
110
,
7697
(
1988
).
27.
G. M.
Varga
, Jr.
,
E.
Papaconstantinou
, and
M. T.
Pope
,
Inorg. Chem.
9
,
662
(
1970
).
28.
H.
So
and
M. T.
Pope
,
Inorg. Chem.
11
,
1441
(
1972
).
29.
R. A.
Prados
,
P. T.
Meiklejohn
, and
M. T.
Pope
,
J. Am. Chem. Soc.
96
,
1261
(
1974
).
30.
R. A.
Prados
and
M. T.
Pope
,
Inorg. Chem.
15
,
2547
(
1976
).
31.
M.
Kozik
,
C. F.
Hammer
, and
L. C. W.
Baker
,
J. Am. Chem. Soc.
108
,
2748
(
1986
).
32.
M.
Kozik
,
C. F.
Hammer
, and
L. C. W.
Baker
,
J. Am. Chem. Soc.
108
,
7627
(
1986
).
33.
R.
Massart
,
R.
Contant
,
J. M.
Fruchart
,
J. P.
Ciabrini
, and
M.
Fournier
,
Inorg. Chem.
16
,
2916
(
1977
).
34.
M. B.
Robin
and
P.
Day
,
Adv. Inorg. Chem. Radiochem.
10
,
247
(
1967
).
35.
H.
Wang
,
S.
Hamanaka
,
Y.
Nishimoto
,
S.
Irle
,
T.
Yokoyama
,
H.
Yoshikawa
, and
K.
Awaga
,
J. Am. Chem. Soc.
134
,
4918
(
2012
).
36.
H. D.
Pratt
 III
and
T. M.
Anderson
,
Dalton Trans.
42
,
15650
(
2013
).
37.
C. M.
Granadeiro
,
B.
de Castro
,
S. S.
Balula
, and
L.
Cunha-Silva
,
Polyhedron
52
,
10
(
2013
).
38.
L.
Cronin
and
A.
Müller
,
Chem. Soc. Rev.
41
,
7333
(
2012
).
39.
C.
Bo
and
J. M.
Poblet
,
Isr. J. Chem.
51
,
228
(
2011
).
40.
J. M.
Clemente-Juan
,
E.
Coronado
, and
A.
Gaita-Ariño
,
Chem. Soc. Rev.
41
,
7464
(
2012
).
41.
X.
López
,
J. J.
Carbó
,
C.
Bo
, and
J. M.
Poblet
,
Chem. Soc. Rev.
41
,
7537
(
2012
).
42.
N.
Suaud
,
A.
Gaita-Ariño
,
J. M.
Clemente-Juan
,
J.
Sánchez-Marín
, and
E.
Coronado
,
J. Am. Chem. Soc.
124
(
50
),
15134
(
2002
).
43.
N.
Suaud
,
A.
Gaita-Ariño
,
J. M.
Clemente-Juan
,
J.
Sánchez-Marín
, and
E.
Coronado
,
Polyhedron
22
(
14-17
),
2331
(
2003
).
44.
N.
Suaud
,
A.
Gaita-Ariño
,
J. M.
Clemente-Juan
, and
E.
Coronado
,
Chem. Eur. J.
10
(
16
),
4041
(
2004
).
45.
J. M.
Clemente-Juan
,
E.
Coronado
,
A.
Gaita-Ariño
, and
N.
Suaud
,
J. Phys. Chem. A
111
(
39
),
9969
(
2007
).
46.
N.
Suaud
,
Y.
Masaro
,
E.
Coronado
,
J. M.
Clemente-Juan
, and
N.
Guihéry
,
Eur. J. Inorg. Chem.
2009
,
5109
.
47.
N.
Suaud
,
X.
López
,
N.
Ben Amor
,
N. A. G.
Bandeira
,
C.
de Graaf
, and
J. M.
Poblet
,
J. Chem. Theory Comput.
11
(
2
),
550
(
2015
).
48.
H.
Liu
,
N. A. G.
Bandeira
,
V.
Félix
, and
M. J.
Calhorda
,
Eur. J. Inorg. Chem.
2013
,
1713
.
49.
G.
Hervé
and
A.
Tézé
,
Inorg. Chem.
16
,
2115
(
1977
).
50.
R.
Neier
,
C.
Trojanowski
, and
R.
Mattes
,
J. Chem. Soc., Dalton Trans.
1995
,
2521
.
51.
K.
Nomiya
,
Y.
Sugie
,
K.
Amimoto
, and
M.
Miwa
,
Polyhedron
6
,
519
(
1987
).
52.
J. J.
Altenau
,
M. T.
Pope
,
R. A.
Prados
, and
H.
So
,
Inorg. Chem.
14
,
417
(
1975
).
53.
G. S.
Chorghade
and
M. T.
Pope
,
J. Am. Chem. Soc.
109
,
5134
(
1987
).
54.
C.
Sanchez
,
J.
Livage
,
J. P.
Launay
,
M.
Fournier
, and
Y.
Jeannin
,
J. Am. Chem. Soc.
104
,
3194
(
1982
).
55.
T. L.
Jorris
,
M.
Kozik
,
N.
Casan-Pastor
,
P. J.
Domaille
,
R. G.
Finke
,
W. K.
Miller
, and
L. C. W.
Baker
,
J. Am. Chem. Soc.
109
,
7402
(
1987
).
56.
E. D.
Becker
,
High Resolution NMR: Theory and Chemical Applications
, 2nd ed. (
Academic Press
,
New York
,
1980
), p.
44
;
D. F.
Evans
,
J. Chem. Soc.
1959
,
2003
;
H.
Gunther
,
NMR Spectroscopy
(
John Wiley & Sons
,
New York
,
1980
), p.
47
.
57.
G. M.
Brown
,
M. R.
Noe-Spirlet
,
W. R.
Busing
, and
H. A.
Levy
,
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
33
,
1038
(
1977
).
58.
I. A.
Weinstock
,
Chem. Rev.
98
,
113
(
1998
).
59.
A.
Sartorel
,
M.
Carraro
,
A.
Bagno
,
G.
Scorrano
, and
M.
Bonchio
,
Angew. Chem., Int. Ed.
46
,
3255
(
2007
).
60.
X.
López
,
J. M.
Maestre
,
C.
Bo
, and
J.-M.
Poblet
,
J. Am. Chem. Soc.
123
,
9571
(
2001
).
61.
I.
Mayer
,
Int. J. Quantum Chem.
29
,
73
(
1986
).
62.
O.
Kahn
,
Molecular Magnetism
(
Wiley VCH
,
New York
,
1993
).
63.
H. A.
Jahn
and
E.
Teller
,
Proc. R. Soc. London, Ser. A
161
,
220
(
1937
).
64.
R. G.
Pearson
,
J. Am. Chem. Soc.
91
,
4947
(
1969
).
65.
R. G.
Pearson
,
Proc. Natl. Acad. Sci. U. S. A.
72
,
2104
(
1975
).
66.
R. G.
Pearson
,
J. Mol. Struct.
103
,
25
(
1983
).
67.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
68.
N. S.
Hush
,
Trans. Faraday Soc.
57
,
557
(
1961
).
69.
G. C.
Allen
and
N. S.
Hush
, in
Progress in Inorganic Chemistry
, edited by
F. A.
Cotton
(
Wiley
,
1967
), p.
357
.
70.
N. S.
Hush
, in
Progress in Inorganic Chemistry
, edited by
F. A.
Cotton
(
Wiley
,
1967
), p.
391
.
71.
J. P.
Launay
and
M.
Verdaguer
,
Electrons in Molecules: From Basic Principles to Molecular Electronics
(
OUP Oxford
,
2013
).
72.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
N. J.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, Gaussian, Inc., www.gaussian.com.
73.
L. E.
Roy
,
P. J.
Hay
, and
R. L.
Martin
,
J. Chem. Theory Comput.
4
,
1029
(
2008
).
74.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
,
J. Chem. Inf. Model.
47
,
1045
(
2007
).
76.
T. H.
Dunning
, Jr.
and
P. J.
Hay
,
Methods of Electronic Structure Theory
(
Plenum Press
,
1977
), Vol. 2, pp.
1
28
.
77.
W. R.
Wadt
and
P. J.
Hay
,
J. Chem. Phys.
82
,
284
(
1985
).
78.
C.
Adamo
,
M.
Cossi
,
G.
Scalmani
, and
V.
Barone
,
Chem. Phys. Lett.
307
,
265
(
1999
).
79.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
80.
81.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
82.
J.
Tomasi
,
B.
Mennucci
, and
E.
Cancès
,
J. Mol. Struct.: THEOCHEM
464
,
211
(
1999
).
83.
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. B
113
,
6378
(
2009
).
84.
M. E.
Casida
, in
Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
1995
), p.
155
.
85.
86.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
87.
See http://www.chemcraftprog.com/index.html for Chemcraft; accessed 12 February 2021.
88.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).

Supplementary Material

You do not currently have access to this content.