Neural networks (NNs) are employed to predict equations of state from a given isotropic pair potential using the virial expansion of the pressure. The NNs are trained with data from molecular dynamics simulations of monoatomic gases and liquids, sampled in the NVT ensemble at various densities. We find that the NNs provide much more accurate results compared to the analytic low-density limit estimate of the second virial coefficient and the Carnahan–Starling equation of state for hard sphere liquids. Furthermore, we design and train NNs for computing (effective) pair potentials from radial pair distribution functions, g(r), a task that is often performed for inverse design and coarse-graining. Providing the NNs with additional information on the forces greatly improves the accuracy of the predictions since more correlations are taken into account; the predicted potentials become smoother, are significantly closer to the target potentials, and are more transferable as a result.

1.
M. G.
Noro
and
D.
Frenkel
,
J. Chem. Phys.
113
,
2941
(
2000
).
2.
P. J.
Lu
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
,
Nature
453
,
499
(
2008
).
3.
P. G.
Bolhuis
,
A. A.
Louis
,
J. P.
Hansen
, and
E. J.
Meijer
,
J. Chem. Phys.
114
,
4296
(
2001
).
5.
F.
Sciortino
,
S.
Mossa
,
E.
Zaccarelli
, and
P.
Tartaglia
,
Phys. Rev. Lett.
93
,
055701
(
2004
).
6.
S.
Mossa
,
F.
Sciortino
,
P.
Tartaglia
, and
E.
Zaccarelli
,
Langmuir
20
,
10756
(
2004
).
7.
B. M.
Mladek
,
G.
Kahl
, and
C. N.
Likos
,
Phys. Rev. Lett.
100
,
028301
(
2008
).
8.
A.
Jain
,
J. A.
Bollinger
, and
T. M.
Truskett
,
AIChE J.
60
,
2732
(
2014
).
9.
Z. M.
Sherman
,
M. P.
Howard
,
B. A.
Lindquist
,
R. B.
Jadrich
, and
T. M.
Truskett
,
J. Chem. Phys.
152
,
140902
(
2020
).
10.
11.
B. A.
Lindquist
,
R. B.
Jadrich
, and
T. M.
Truskett
,
J. Chem. Phys.
145
,
111101
(
2016
).
12.
D.
Chen
,
G.
Zhang
, and
S.
Torquato
,
J. Phys. Chem. B
122
,
8462
(
2018
).
13.
M. R.
Khadilkar
,
S.
Paradiso
,
K. T.
Delaney
, and
G. H.
Fredrickson
,
Macromolecules
50
,
6702
(
2017
).
14.
K. R.
Gadelrab
,
A. F.
Hannon
,
C. A.
Ross
, and
A.
Alexander-Katz
,
Mol. Syst. Des. Eng.
2
,
539
(
2017
).
15.
J.
Behler
,
J. Chem. Phys.
145
,
170901
(
2016
).
16.
D. J.
Audus
and
J. J.
de Pablo
,
ACS Macro Lett.
6
,
1078
(
2017
).
17.
A. L.
Ferguson
,
J. Phys.: Condens. Matter
30
,
043002
(
2017
).
18.
T.
Bereau
,
R. A.
DiStasio
, Jr.
,
A.
Tkatchenko
, and
O. A.
von Lilienfeld
,
J. Chem. Phys.
148
,
241706
(
2018
).
19.
T.
Bereau
, “
Data-driven methods in multiscale modeling of soft matter
,” in
Handbook of Materials Modeling: Methods: Theory and Modeling
, edited by
W.
Andreoni
and
S.
Yip
(
Springer International Publishing
,
Cham
,
2018
), pp.
1
12
.
20.
N. E.
Jackson
,
M. A.
Webb
, and
J. J.
de Pablo
,
Curr. Opin. Chem. Eng.
23
,
106
(
2019
).
21.
S.
Wu
,
Y.
Kondo
,
M.-A.
Kakimoto
,
B.
Yang
,
H.
Yamada
,
I.
Kuwajima
,
G.
Lambard
,
K.
Hongo
,
Y.
Xu
,
J.
Shiomi
,
C.
Schick
,
J.
Morikawa
, and
R.
Yoshida
,
npj Comput. Mater.
5
,
66
(
2019
).
22.
J.
Schmidt
,
M. R. G.
Marques
,
S.
Botti
, and
M. A. L.
Marques
,
npj Comput. Mater.
5
,
83
(
2019
).
23.
R. L.
McGreevy
and
L.
Pusztai
,
Mol. Simul.
1
,
359
(
1988
).
24.
D. A.
Keen
and
R. L.
McGreevy
,
Nature
344
,
423
(
1990
).
25.
A. P.
Lyubartsev
and
A.
Laaksonen
,
Phys. Rev. E
52
,
3730
(
1995
).
26.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
(
2003
).
27.
M. C.
Rechtsman
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. Lett.
95
,
228301
(
2005
).
28.
L.
Reatto
,
D.
Levesque
, and
J. J.
Weis
,
Phys. Rev. A
33
,
3451
(
1986
).
29.
K.
Müller
,
N.
Osterman
,
D.
Babič
,
C. N.
Likos
,
J.
Dobnikar
, and
A.
Nikoubashman
,
Langmuir
30
,
5088
(
2014
).
30.
L.
Song
,
L.
Yang
,
J.
Meng
, and
S.
Yang
,
J. Phys. Chem. Lett.
8
,
347
(
2017
).
32.
G.
Milano
and
F.
Müller-Plathe
,
J. Phys. Chem. B
109
,
18609
(
2005
).
33.
B.
Bayramoglu
and
R.
Faller
,
Macromolecules
45
,
9205
(
2012
).
34.
A. A.
Louis
,
J. Phys.: Condens. Matter
14
,
9187
(
2002
).
35.
D.
Rosenberger
,
M.
Hanke
, and
N. F. A.
van der Vegt
,
Eur. Phys. J. Spec. Top.
225
,
1323
(
2016
).
36.
M. S.
Shell
,
J. Chem. Phys.
129
,
144108
(
2008
).
37.
R. L.
Henderson
,
Phys. Lett. A
49
,
197
(
1974
).
38.
H.
Wang
,
C.
Junghans
, and
K.
Kremer
,
Eur. Phys. J. E
28
,
221
(
2009
).
39.
A.
Das
and
H. C.
Andersen
,
J. Chem. Phys.
132
,
164106
(
2010
).
40.
T.
Bereau
and
J. F.
Rudzinski
,
Phys. Rev. Lett.
121
,
256002
(
2018
).
41.
K. M.
Lebold
and
W. G.
Noid
,
J. Chem. Phys.
150
,
234107
(
2019
).
42.
C.
Scherer
,
R.
Scheid
,
D.
Andrienko
, and
T.
Bereau
,
J. Chem. Theory Comput.
16
,
3194
(
2020
).
43.
M. K.
Meinel
and
F.
Müller-Plathe
,
J. Chem. Theory Comput.
16
,
1411
(
2020
).
44.
T. T.
Foley
,
K. M.
Kidder
,
M. S.
Shell
, and
W. G.
Noid
,
Proc. Natl. Acad. Sci. U. S. A.
117
,
24061
(
2020
).
45.
See https://gitlab.rlp.net/anikouba/boltzmann for the source code and web-based implementations of our programs.
46.
O.
Ronneberger
,
P.
Fischer
, and
T.
Brox
, in
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
, edited by
N.
Navab
,
J.
Hornegger
,
W. M.
Wells
, and
A. F.
Frangi
(
Springer International Publishing
,
Cham
,
2015
), pp.
234
241
.
47.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: Large-scale machine learning on heterogeneous systems
” (
2015
), software available from tensorflow.org.
48.
D.
Kingma
and
J.
Ba
, arXiv:1412.6980 (
2014
).
49.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
50.
J. A.
Anderson
,
J.
Glaser
, and
S. C.
Glotzer
,
Comput. Mater. Sci.
173
,
109363
(
2020
).
51.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
Cambridge, MA
,
2006
).
52.
V.
Rühle
,
C.
Junghans
,
A.
Lukyanov
,
K.
Kremer
, and
D.
Andrienko
,
J. Chem. Theory Comput.
5
,
3211
3223
(
2009
).
53.
J. J.
Potoff
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
109
,
10914
(
1998
).
54.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1993
).
55.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
56.
M.
Bishop
,
M. H.
Kalos
, and
H. L.
Frisch
,
J. Chem. Phys.
70
,
1299
(
1979
).
57.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
58.
C.-C.
Fu
,
P. M.
Kulkarni
,
M.
Scott Shell
, and
L.
Gary Leal
,
J. Chem. Phys.
137
,
164106
(
2012
).
59.
N. J. H.
Dunn
and
W. G.
Noid
,
J. Chem. Phys.
143
,
243148
(
2015
).
60.
B. A.
Lindquist
,
R. B.
Jadrich
,
M. P.
Howard
, and
T. M.
Truskett
,
J. Chem. Phys.
151
,
104104
(
2019
).

Supplementary Material

You do not currently have access to this content.