The benzene–ethene and parallel-displaced (PD) benzene–benzene dimers are the most fundamental systems involving π–π stacking interactions. Several high-level ab initio investigations calculated the binding energies of these dimers using the coupled-cluster with singles, doubles, and quasi-perturbative triple excitations [CCSD(T)] method at the complete basis set [CBS] limit using various approaches such as reduced virtual orbital spaces and/or MP2-based basis set corrections. Here, we obtain CCSDT(Q) binding energies using a Weizmann-3-type approach. In particular, we extrapolate the self-consistent field (SCF), CCSD, and (T) components using large heavy-atom augmented Gaussian basis sets [namely, SCF/jul-cc-pV{5,6}Z, CCSD/jul-cc-pV{Q,5}Z, and (T)/jul-cc-pV{T,Q}Z]. We consider post-CCSD(T) contributions up to CCSDT(Q), inner-shell, scalar-relativistic, and Born–Oppenheimer corrections. Overall, our best relativistic, all-electron CCSDT(Q) binding energies are ∆Ee,all,rel = 1.234 (benzene–ethene) and 2.550 (benzene–benzene PD), ∆H0 = 0.949 (benzene–ethene) and 2.310 (benzene–benzene PD), and ∆H298 = 0.130 (benzene–ethene) and 1.461 (benzene–benzene PD) kcal mol−1. Important conclusions are reached regarding the basis set convergence of the SCF, CCSD, (T), and post-CCSD(T) components. Explicitly correlated calculations are used as a sanity check on the conventional binding energies. Overall, post-CCSD(T) contributions are destabilizing by 0.028 (benzene–ethene) and 0.058 (benzene–benzene) kcal mol−1, and thus, they cannot be neglected if sub-chemical accuracy is sought (i.e., errors below 0.1 kcal mol−1). CCSD(T)/aug-cc-pwCVTZ core–valence corrections increase the binding energies by 0.018 (benzene–ethene) and 0.027 (benzene–benzene PD) kcal mol−1. Scalar-relativistic and diagonal Born–Oppenheimer corrections are negligibly small. We use our best CCSDT(Q) binding energies to evaluate the performance of MP2-based, CCSD-based, and lower-cost composite ab initio procedures for obtaining these challenging π–π stacking binding energies.

1.
E. C.
Lee
,
D.
Kim
,
P.
Jurečka
,
P.
Tarakeshwar
,
P.
Hobza
, and
K. S.
Kim
,
J. Phys. Chem.
111
,
3446
(
2007
).
2.
J.
Cerny
and
P.
Hobza
,
Phys. Chem. Chem. Phys.
9
,
5291
(
2007
).
3.
K. E.
Riley
,
M.
Pitoňák
,
P.
Jurečka
, and
P.
Hobza
,
Chem. Rev.
110
,
5023
(
2010
).
4.
T.
Akasaka
,
A.
Osuka
,
S.
Fukuzumi
,
H.
Kandori
, and
Y.
Aso
,
Chemical Science of π-Electron Systems
(
Springer Japan
,
Tokyo
,
2015
).
5.
D. W.
Johnson
and
F.
Hof
,
Aromatic Interactions: Frontiers in Knowledge and Application
(
The Royal Society of Chemistry
,
Cambridge, UK
,
2017
).
6.
J.
Rezac
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
).
7.
J.
Rezac
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
3466
(
2011
).
8.
P.
Hobza
,
H. L.
Selzle
, and
E. W.
Schlag
,
J. Phys. Chem.
100
,
18790
(
1996
).
9.
M. O.
Sinnokrot
,
E. F.
Valeev
, and
C. D.
Sherrill
,
J. Am. Chem. Soc.
124
,
10887
(
2002
).
10.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Phys. Chem. A
108
,
10200
(
2004
).
11.
J. G.
Hill
,
J. A.
Platts
, and
H.-J.
Werner
,
Phys. Chem. Chem. Phys.
8
,
4072
(
2006
).
12.
T.
Janowski
and
P.
Pulay
,
Chem. Phys. Lett.
447
,
27
(
2007
).
13.
M.
Pitonak
,
P.
Neogrady
,
J.
Rezac
,
P.
Jurecka
,
M.
Urban
, and
P.
Hobza
,
J. Chem. Theory Comput.
4
,
1829
(
2008
).
14.
C. D.
Sherrill
,
T.
Takatani
, and
E. G.
Hohenstein
,
J. Phys. Chem. A
113
,
10146
(
2009
).
15.
E. G.
Hohenstein
and
C. D.
Sherrill
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
304
(
2012
).
16.
L. A.
Burns
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
10
,
49
(
2014
).
17.
D. A.
Sirianni
,
L. A.
Burns
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
13
,
86
(
2017
).
18.
M. K.
Kesharwani
,
A.
Karton
,
N.
Sylvetsky
, and
J. M. L.
Martin
,
Aust. J. Chem.
71
,
238
(
2018
).
19.
S.
Alessandrini
,
V.
Barone
, and
C.
Puzzarini
,
J. Chem. Theory Comput.
16
,
988
(
2020
).
20.
L. A.
Burns
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Phys.
141
,
234111
(
2014
).
21.
J. M. L.
Martin
and
G.
de Oliveira
,
J. Chem. Phys.
111
,
1843
(
1999
).
22.
J. M. L.
Martin
and
S.
Parthiban
, “
W1 and W2 theory and their variants: Thermochemistry in the kJ/mol accuracy range
,” in , edited by
J.
Cioslowski
(
Kluwer
,
Dordrecht
,
2001
), Vol. 22, pp.
31
65
.
23.
J. M. L.
Martin
,
Annu. Rep. Comput. Chem.
1
,
31
(
2005
).
24.
A.
Karton
,
E.
Rabinovich
,
J. M. L.
Martin
, and
B.
Ruscic
,
J. Chem. Phys.
125
,
144108
(
2006
).
25.
A.
Karton
,
S.
Daon
, and
J. M. L.
Martin
,
Chem. Phys. Lett.
510
,
165
(
2011
).
26.
A.
Karton
and
J. M. L.
Martin
,
J. Chem. Phys.
136
,
124114
(
2012
).
27.
N.
Sylvetsky
,
K. A.
Peterson
,
A.
Karton
, and
J. M. L.
Martin
,
J. Chem. Phys.
144
,
214101
(
2016
).
28.
A.
Karton
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
,
292
(
2016
).
29.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
30.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
31.
E.
Papajak
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
7
,
10
(
2011
).
32.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
33.
K. A.
Peterson
and
T. H.
Dunning
,
J. Chem. Phys.
117
,
10548
(
2002
).
34.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys.
82
,
89
(
1974
).
35.
W. A.
de Jong
,
R. J.
Harrison
, and
D. A.
Dixon
,
J. Chem. Phys.
114
,
48
(
2001
).
36.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
37.
M.
Kállay
,
P. R.
Nagy
,
D.
Mester
,
Z.
Rolik
,
G.
Samu
,
J.
Csontos
,
J.
Csóka
,
P. B.
Szabó
,
L.
Gyevi-Nagy
,
B.
Hégely
,
I.
Ladjánszki
,
L.
Szegedy
,
B.
Ladóczki
,
K.
Petrov
,
M.
Farkas
,
P. D.
Mezei
, and
Á.
Ganyecz
,
J. Chem. Phys.
152
,
074107
(
2020
).
38.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
152
,
214108
(
2020
).
39.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
,
J. Chem. Phys.
152
,
144107
(
2020
).
40.
N.
Sylvetsky
,
M. K.
Kesharwani
, and
J. M. L.
Martin
,
J. Chem. Phys.
147
,
134106
(
2017
).
41.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
42.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
43.
K. E.
Yousaf
and
K. A.
Peterson
,
J. Chem. Phys.
129
,
184108
(
2008
).
44.
C.
Hättig
,
D. P.
Tew
, and
A.
Köhn
,
J. Chem. Phys.
132
,
231102
(
2010
).
45.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
46.
B.
Brauer
,
M. K.
Kesharwani
, and
J. M. L.
Martin
,
J. Chem. Theory Comput.
10
,
3791
(
2014
).
47.
B.
Brauer
,
M. K.
Kesharwani
,
S.
Kozuch
, and
J. M. L.
Martin
,
Phys. Chem. Chem. Phys.
18
,
20905
(
2016
).
48.
M. K.
Kesharwani
,
N.
Sylvetsky
,
A.
Köhn
,
D. P.
Tew
, and
J. M. L.
Martin
,
J. Chem. Phys.
149
,
154109
(
2018
).
49.
S.
Kozuch
and
J. M. L.
Martin
,
Phys. Chem. Chem. Phys.
13
,
20104
(
2011
).
50.
S.
Kozuch
and
J. M. L.
Martin
,
J. Comput. Chem.
34
,
2327
(
2013
).
51.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
52.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
53.
D.
Rappoport
and
F.
Furche
,
J. Chem. Phys.
133
,
134105
(
2010
).
54.

We note that at the DSD-PBEP86–D3BJ/Def2-QZVPPD level of theory, we obtain a small imaginary frequency of 3.9 cm−1 for the TT dimer, which is attributed to numerical instability. At the DSD-PBEP86-D3BJ/Def2-TZVPPD level of theory, we obtain all real frequencies for the TT dimer.

55.
M. K.
Kesharwani
,
B.
Brauer
, and
J. M. L.
Martin
,
J. Phys. Chem. A
119
,
1701
(
2015
).
56.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision A.03,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
57.
S.
Grimme
,
L.
Goerigk
, and
R. F.
Fink
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
886
(
2012
).
58.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
59.
R. A.
Distasio
and
M.
Head–Gordon
,
Mol. Phys.
105
,
1073
(
2007
).
60.
J. G.
Hill
and
J. A.
Platts
,
J. Chem. Theory Comput.
3
,
80
(
2007
).
62.
R. F.
Fink
,
J. Chem. Phys.
133
,
174113
(
2010
).
63.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
64.
T.
Takatani
,
E. G.
Hohenstein
, and
C. D.
Sherrill
,
J. Chem. Phys.
128
,
124111
(
2008
).
65.
M.
Pitonak
,
J.
Rezac
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
12
,
9611
(
2011
).
66.
M.
Pitonak
,
P.
Neogrady
,
J.
Cerny
,
S.
Grimme
, and
P.
Hobza
,
ChemPhysChem
10
,
282
(
2009
).
67.
A.
Karton
and
L.
Goerigk
,
J. Comput. Chem.
36
,
622
(
2015
).
68.
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
127
,
124105
(
2007
).
69.
B.
Chan
,
J.
Deng
, and
L.
Radom
,
J. Chem. Theory Comput.
7
,
112
(
2011
).
70.
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
126
,
084108
(
2007
).
71.
J. A.
Montgomery
, Jr.
,
M. J.
Frisch
,
J. W.
Ochterski
, and
G. A.
Petersson
,
J. Chem. Phys.
110
,
2822
(
1999
).
72.
J. W.
Ochterski
,
G. A.
Petersson
, and
J. A.
Montgomery
, Jr.
,
J. Chem. Phys.
104
,
2598
(
1996
).
73.
B. W.
Hopkins
and
G. S.
Tschumper
,
J. Phys. Chem. A
108
,
2941
(
2004
).
74.
A. D.
Boese
,
J. Chem. Theory Comput.
9
,
4403
(
2013
).
75.
J.
Rezác
and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
2151
(
2013
).
76.
J. R.
Lane
,
J. Chem. Theory Comput.
9
,
316
(
2013
).
77.
L.
Simova
,
J.
Rezac
, and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
3420
(
2013
).
78.
J.
Rezac
,
L.
Simova
, and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
364
(
2013
).
79.
D. G. A.
Smith
,
P.
Jankowski
,
M.
Slawik
,
H. A.
Witek
, and
K.
Patkowski
,
J. Chem. Theory Comput.
10
,
3140
(
2014
).
80.
D. G. A.
Smith
,
K.
Patkowski
,
D.
Trinh
,
N.
Balakrishnan
,
T.-G.
Lee
,
R. C.
Forrey
,
B. H.
Yang
, and
P. C.
Stancil
,
J. Phys. Chem. A
118
,
6351
(
2014
).
81.
L.
Demovicova
,
P.
Hobza
, and
J.
Rezac
,
Phys. Chem. Chem. Phys.
16
,
19115
(
2014
).
82.
J.
Rezác
,
M.
Dubecky
,
P.
Jurecka
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
17
,
19268
(
2015
).
83.
K. B.
Moore
,
K.
Sadeghian
,
C. D.
Sherrill
,
C.
Ochsenfeld
, and
H. F.
Schaefer
,
J. Chem. Theory Comput.
13
,
5379
(
2017
).
84.
M. E.
Wolf
,
B.
Zhang
,
J. M.
Turney
, and
H. F.
Schaefer
,
Phys. Chem. Chem. Phys.
21
,
6160
(
2019
).
85.
P.
Hobza
and
J.
Šponer
,
Chem. Rev.
99
,
3247
(
1999
).
86.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
9221
(
1998
).
87.
J. R.
Grover
,
E. A.
Walters
, and
E. T.
Hui
,
J. Chem. Phys.
91
,
3233
(
1987
).
88.
H.
Krause
,
B.
Ernstberger
, and
H. J.
Neusser
,
Chem. Phys. Lett.
184
,
411
(
1991
).

Supplementary Material

You do not currently have access to this content.