The Gibbs–Thomson (GT) equation describes the shift of the crystallization temperature for a confined fluid with respect to the bulk as a function of pore size. While this century old relation is successfully used to analyze experiments, its derivations found in the literature often rely on nucleation theory arguments (i.e., kinetics instead of thermodynamics) or fail to state their assumptions, therefore leading to similar but different expressions. Here, we revisit the derivation of the GT equation to clarify the system definition, corresponding thermodynamic ensemble, and assumptions made along the way. We also discuss the role of the thermodynamic conditions in the external reservoir on the final result. We then turn to numerical simulations of a model system to compute independently the various terms entering in the GT equation and compare the predictions of the latter with the melting temperatures determined under confinement by means of hyper-parallel tempering grand canonical Monte Carlo simulations. We highlight some difficulties related to the sampling of crystallization under confinement in simulations. Overall, despite its limitations, the GT equation may provide an interesting alternative route to predict the melting temperature in large pores using molecular simulations to evaluate the relevant quantities entering in this equation. This approach could, for example, be used to investigate the nanoscale capillary freezing of ionic liquids recently observed experimentally between the tip of an atomic force microscope and a substrate.

1.
L. D.
Gelb
,
K. E.
Gubbins
,
R.
Radhakrishnan
, and
M.
Sliwinska-Bartkowiak
, “
Phase separation in confined systems
,”
Rep. Prog. Phys.
62
,
1573
1659
(
1999
).
2.
R.
Evans
, “
Fluids adsorbed in narrow pores: Phase equilibria and structure
,”
J. Phys.: Condens. Matter
2
,
8989
9007
(
1990
).
3.
C.
Alba-Simionesco
,
B.
Coasne
,
G.
Dosseh
,
G.
Dudziak
,
K. E.
Gubbins
,
R.
Radhakrishnan
, and
M.
Sliwinska-Bartkowiak
, “
Effects of confinement on freezing and melting
,”
J. Phys.: Condens. Matter
18
,
R15
R68
(
2006
).
4.
M.
Alcoutlabi
and
G. B.
McKenna
, “
Effects of confinement on material behaviour at the nanometre size scale
,”
J. Phys.: Condens. Matter
17
,
R461
R524
(
2005
).
5.
J.
Comtet
,
A.
Niguès
,
V.
Kaiser
,
B.
Coasne
,
L.
Bocquet
, and
A.
Siria
, “
Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening
,”
Nat. Mater.
16
,
634
639
(
2017
).
6.
J.
Warnock
,
D. D.
Awschalom
, and
M. W.
Shafer
, “
Geometrical supercooling of liquids in porous glass
,”
Phys. Rev. Lett.
57
,
1753
1756
(
1986
).
7.
D. D.
Awschalom
and
J.
Warnock
, “
Supercooled liquids and solids in porous glass
,”
Phys. Rev. B
35
,
6779
6785
(
1987
).
8.
T.
Kaneko
, “
Elevation/depression mechanism of freezing points of liquid confined in slit nanopores
,”
Mol. Simul.
43
,
1364
1369
(
2017
).
9.
F.
Bresme
and
L. G.
Cámara
, “
Computer simulation studies of crystallization under confinement conditions
,”
Chem. Geol.
230
,
197
206
(
2006
).
10.
K.
Koga
and
H.
Tanaka
, “
Phase diagram of water between hydrophobic surfaces
,”
J. Chem. Phys.
122
,
104711
(
2005
).
11.
H. K.
Christenson
, “
Confinement effects on freezing and melting
,”
J. Phys.: Condens. Matter
13
,
R95
R133
(
2001
).
12.
C. L.
Jackson
and
G. B.
McKenna
, “
The melting behavior of organic materials confined in porous solids
,”
J. Chem. Phys.
93
,
9002
9011
(
1990
).
13.
O.
Petrov
and
I.
Furó
, “
Curvature-dependent metastability of the solid phase and the freezing-melting hysteresis in pores
,”
Phys. Rev. E
73
,
011608
(
2006
).
14.
G. W.
Scherer
, “
Crystallization in pores
,”
Cem. Concr. Res.
29
,
1347
1358
(
1999
).
15.
M. B.
Ritter
,
D. D.
Awschalom
, and
M. W.
Shafer
, “
Collective behavior of supercooled liquids in porous media
,”
Phys. Rev. Lett.
61
,
966
969
(
1988
).
16.
S.
Nath Chakraborty
and
L. D.
Gelb
, “
A Monte Carlo simulation study of methane clathrate hydrates confined in slit-shaped pores
,”
J. Phys. Chem. B
116
,
2183
2197
(
2012
).
17.
P.
Buffat
and
J.-P.
Borel
, “
Size effect on the melting temperature of gold particles
,”
Phys. Rev. A
13
,
2287
2298
(
1976
).
18.
C.
Valeriani
,
E.
Sanz
, and
D.
Frenkel
, “
Rate of homogeneous crystal nucleation in molten NaCl
,”
J. Chem. Phys.
122
,
194501
(
2005
).
19.
F. R.
Hung
,
B.
Coasne
,
E. E.
Santiso
,
K. E.
Gubbins
,
F. R.
Siperstein
, and
M.
Sliwinska-Bartkowiak
, “
Molecular modeling of freezing of simple fluids confined within carbon nanotubes
,”
J. Chem. Phys.
122
,
144706
(
2005
).
20.
R.
Radhakrishnan
,
K. E.
Gubbins
, and
M.
Sliwinska-Bartkowiak
, “
Global phase diagrams for freezing in porous media
,”
J. Chem. Phys.
116
,
1147
1155
(
2002
).
21.
R.
Evans
and
U.
Marini Bettolo Marconi
, “
Phase equilibria and solvation forces for fluids confined between parallel walls
,”
J. Chem. Phys.
86
,
7138
7148
(
1987
).
22.
R.
Evans
,
U. M. B.
Marconi
, and
P.
Tarazona
, “
Fluids in narrow pores: Adsorption, capillary condensation, and critical points
,”
J. Chem. Phys.
84
,
2376
2399
(
1986
).
23.
R.
Evans
,
U. M. B.
Marconi
, and
P.
Tarazona
, “
Capillary condensation and adsorption in cylindrical and slit-like pores
,”
J. Chem. Soc., Faraday Trans. 2
82
,
1763
1787
(
1986
).
24.
H.
Dominguez
,
M. P.
Allen
, and
R.
Evans
, “
Monte Carlo studies of the freezing and condensation transitions of confined fluids
,”
Mol. Phys.
96
,
209
229
(
1999
).
25.
J.-P.
Hansen
and
L.
Verlet
, “
Phase transitions of the Lennard-Jones system
,”
Phys. Rev.
184
,
151
161
(
1969
).
26.
W. A.
Steele
, “
The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms
,”
Surf. Sci.
36
,
317
352
(
1973
).
27.
W. A.
Steele
, “
The interaction of rare gas atoms with graphitized carbon black
,”
J. Phys. Chem.
82
,
817
821
(
1978
).
28.
S. T.
Cui
,
P. T.
Cummings
, and
H. D.
Cochran
, “
Molecular simulation of the transition from liquidlike to solidlike behavior in complex fluids confined to nanoscale gaps
,”
J. Chem. Phys.
114
,
7189
7195
(
2001
).
29.
A. J. C.
Ladd
and
L. V.
Woodcock
, “
Triple-point coexistence properties of the Lennard-Jones system
,”
Chem. Phys. Lett.
51
,
155
159
(
1977
).
30.
R.
Agrawal
and
D. A.
Kofke
, “
Solid-fluid coexistence for inverse-power potentials
,”
Phys. Rev. Lett.
74
,
122
125
(
1995
).
31.
R.
Agrawal
and
D. A.
Kofke
, “
Thermodynamic and structural properties of model systems at solid-fluid coexistence
,”
Mol. Phys.
85
,
23
42
(
1995
).
32.
R.
Agrawal
and
D. A.
Kofke
, “
Thermodynamic and structural properties of model systems at solid-fluid coexistence: II. Melting and sublimation of the Lennard-Jones system
,”
Mol. Phys.
85
,
43
59
(
1995
).
33.
E. A.
Mastny
and
J. J.
de Pablo
, “
Melting line of the Lennard-Jones system, infinite size, and full potential
,”
J. Chem. Phys.
127
,
104504
(
2007
).
34.
X.
Wang
,
S.
Ramírez-Hinestrosa
,
J.
Dobnikar
, and
D.
Frenkel
, “
The Lennard-Jones potential: When (not) to use it
,”
Phys. Chem. Chem. Phys.
22
,
10624
(
2020
).
35.
A.
Ahmed
and
R. J.
Sadus
, “
Effect of potential truncations and shifts on the solid-liquid phase coexistence of Lennard-Jones fluids
,”
J. Chem. Phys.
133
,
124515
(
2010
).
36.
A.
Ghoufi
,
P.
Malfreyt
, and
D. J.
Tildesley
, “
Computer modelling of the surface tension of the gas–liquid and liquid–liquid interface
,”
Chem. Soc. Rev.
45
,
1387
1409
(
2016
).
37.
J.
Vrabec
,
G. K.
Kedia
,
G.
Fuchs
, and
H.
Hasse
, “
Comprehensive study of the vapour–liquid coexistence of the truncated and shifted Lennard-Jones fluid including planar and spherical interface properties
,”
Mol. Phys.
104
,
1509
1527
(
2006
).
38.
D. A.
Kofke
, “
Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line
,”
J. Chem. Phys.
98
,
4149
4162
(
1993
).
39.
A. Z.
Panagiotopoulos
, “
Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble
,”
Mol. Phys.
61
,
813
826
(
1987
).
40.
A. Z.
Panagiotopoulos
,
N.
Quirke
,
M.
Stapleton
, and
D. J.
Tildesley
, “
Phase equilibria by simulation in the Gibbs ensemble: Alternative derivation, generalization and application to mixture and membrane equilibria
,”
Mol. Phys.
63
,
527
545
(
1988
).
41.
B.
Widom
, “
Some topics in the theory of fluids
,”
J. Chem. Phys.
39
,
2808
2812
(
1963
).
42.
J. H.
Irving
and
J. G.
Kirkwood
, “
The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys.
18
,
817
829
(
1950
).
43.
J. G.
Kirkwood
and
F. P.
Buff
, “
The statistical mechanical theory of surface tension
,”
J. Chem. Phys.
17
,
338
343
(
1949
).
44.
M. J. P.
Nijmeijer
and
J. M. J.
van Leeuwen
, “
Microscopic expressions for the surface and line tension
,”
J. Phys. A: Math. Gen.
23
,
4211
(
1990
).
45.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
805
(
1983
).
46.
S.
Auer
and
D.
Frenkel
, “
Numerical simulation of crystal nucleation in colloids
,” in
Advanced Computer Simulation: Approaches for Soft Matter Sciences I
, Advances in Polymer Science, edited by
C.
Holm
and
K.
Kremer
(
Springer
,
Berlin, Heidelberg
,
2005
), pp.
149
208
.
47.
W.
Lechner
and
C.
Dellago
, “
Accurate determination of crystal structures based on averaged local bond order parameters
,”
J. Chem. Phys.
129
,
114707
(
2008
).
48.
A.
Reinhardt
,
J. P. K.
Doye
,
E. G.
Noya
, and
C.
Vega
, “
Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water
,”
J. Chem. Phys.
137
,
194504
(
2012
).
49.
P.
Rein ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
, “
Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling
,”
J. Chem. Phys.
104
,
9932
9947
(
1996
).
50.
T.
Kawasaki
and
A.
Onuki
, “
Construction of a disorder variable from Steinhardt order parameters in binary mixtures at high densities in three dimensions
,”
J. Chem. Phys.
135
,
174109
(
2011
).
51.
E.
Sanz
,
C.
Vega
,
J. R.
Espinosa
,
R.
Caballero-Bernal
,
J. L. F.
Abascal
, and
C.
Valeriani
, “
Homogeneous ice nucleation at moderate supercooling from molecular simulation
,”
J. Am. Chem. Soc.
135
,
15008
15017
(
2013
).
52.
D.
Frenkel
and
A. J. C.
Ladd
, “
New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres
,”
J. Chem. Phys.
81
,
3188
3193
(
1984
).
53.
C. K.
Das
and
J. K.
Singh
, “
Effect of confinement on the solid–liquid coexistence of Lennard-Jones fluid
,”
J. Chem. Phys.
139
,
174706
(
2013
).
54.
G.
Grochola
, “
Constrained fluid λ-integration: Constructing a reversible thermodynamic path between the solid and liquid state
,”
J. Chem. Phys.
120
,
2122
2126
(
2004
).
55.
D. M.
Eike
,
J. F.
Brennecke
, and
E. J.
Maginn
, “
Toward a robust and general molecular simulation method for computing solid–liquid coexistence
,”
J. Chem. Phys.
122
,
014115
(
2004
).
56.
N. B.
Wilding
and
A. D.
Bruce
, “
Freezing by Monte Carlo phase switch
,”
Phys. Rev. Lett.
85
,
5138
5141
(
2000
).
57.
G. C.
McNeil-Watson
and
N. B.
Wilding
, “
Freezing line of the Lennard-Jones fluid: A phase switch Monte Carlo study
,”
J. Chem. Phys.
124
,
064504
(
2006
).
58.
L. G.
Cámara
and
F.
Bresme
, “
Molecular dynamics simulations of crystallization under confinement at triple point conditions
,”
J. Chem. Phys.
119
,
2792
2800
(
2003
).
59.
L.
Wan
,
C. R.
Iacovella
,
T. D.
Nguyen
,
H.
Docherty
, and
P. T.
Cummings
, “
Confined fluid and the fluid-solid transition: Evidence from absolute free energy calculations
,”
Phys. Rev. B
86
,
214105
(
2012
).
60.
T.
Kaneko
,
T.
Mima
, and
K.
Yasuoka
, “
Phase diagram of Lennard-Jones fluid confined in slit pores
,”
Chem. Phys. Lett.
490
,
165
171
(
2010
).
61.
Y.
Long
,
J. C.
Palmer
,
B.
Coasne
,
M.
Śliwinska-Bartkowiak
,
G.
Jackson
,
E. A.
Müller
, and
K. E.
Gubbins
, “
On the molecular origin of high-pressure effects in nanoconfinement: The role of surface chemistry and roughness
,”
J. Chem. Phys.
139
,
144701
(
2013
).
62.
L.
Scalfi
,
T.
Dufils
,
K. G.
Reeves
,
B.
Rotenberg
, and
M.
Salanne
, “
A semiclassical Thomas–Fermi model to tune the metallicity of electrodes in molecular simulations
,”
J. Chem. Phys.
153
,
174704
(
2020
).
63.
L.
Scalfi
,
M.
Salanne
, and
B.
Rotenberg
, “
Molecular simulation of electrode-solution interfaces
,”
Annu. Rev. Phys. Chem.
72
(published on line).
64.
A.
Zaragoza
,
J. R.
Espinosa
,
R.
Ramos
,
J. A.
Cobos
,
J. L.
Aragones
,
C.
Vega
,
E.
Sanz
,
J.
Ramírez
, and
C.
Valeriani
, “
Phase boundaries, nucleation rates and speed of crystal growth of the water-to-ice transition under an electric field: A simulation study
,”
J. Phys.: Condens. Matter
30
,
174002
(
2018
).
65.
L.
Brochard
and
T.
Honório
, “
Revisiting thermo-poro-mechanics under adsorption: Formulation without assuming Gibbs–Duhem equation
,”
Int. J. Eng. Sci.
152
,
103296
(
2020
).
66.
D. C.
Johnston
,
Advances in Thermodynamics of the van der Waals Fluid
(Morgan & Claypool,
2014
).
67.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
68.
M.
Bonomi
,
G.
Bussi
,
C.
Camilloni
,
G. A.
Tribello
,
P.
Banáš
,
A.
Barducci
,
M.
Bernetti
,
P. G.
Bolhuis
,
S.
Bottaro
,
D.
Branduardi
,
R.
Capelli
,
P.
Carloni
,
M.
Ceriotti
,
A.
Cesari
,
H.
Chen
,
W.
Chen
,
F.
Colizzi
,
S.
De
,
M.
De La Pierre
,
D.
Donadio
,
V.
Drobot
,
B.
Ensing
,
A. L.
Ferguson
,
M.
Filizola
,
J. S.
Fraser
,
H.
Fu
,
P.
Gasparotto
,
F. L.
Gervasio
,
F.
Giberti
,
A.
Gil-Ley
,
T.
Giorgino
,
G. T.
Heller
,
G. M.
Hocky
,
M.
Iannuzzi
,
M.
Invernizzi
,
K. E.
Jelfs
,
A.
Jussupow
,
E.
Kirilin
,
A.
Laio
,
V.
Limongelli
,
K.
Lindorff-Larsen
,
T.
Löhr
,
F.
Marinelli
,
L.
Martin-Samos
,
M.
Masetti
,
R.
Meyer
,
A.
Michaelides
,
C.
Molteni
,
T.
Morishita
,
M.
Nava
,
C.
Paissoni
,
E.
Papaleo
,
M.
Parrinello
,
J.
Pfaendtner
,
P.
Piaggi
,
G.
Piccini
,
A.
Pietropaolo
,
F.
Pietrucci
,
S.
Pipolo
,
D.
Provasi
,
D.
Quigley
,
P.
Raiteri
,
S.
Raniolo
,
J.
Rydzewski
,
M.
Salvalaglio
,
G. C.
Sosso
,
V.
Spiwok
,
J.
Šponer
,
D. W. H.
Swenson
,
P.
Tiwary
,
O.
Valsson
,
M.
Vendruscolo
,
G. A.
Voth
,
A.
White
, and
PLUMED Consortium
, “
Promoting transparency and reproducibility in enhanced molecular simulations
,”
Nat. Methods
16
,
670
673
(
2019
).
69.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
PLUMED 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
,
604
613
(
2014
).
70.
A.
Marin-Laflèche
,
M.
Haefele
,
L.
Scalfi
,
A.
Coretti
,
T.
Dufils
,
G.
Jeanmairet
,
S.
Reed
,
A.
Serva
,
R.
Berthin
,
C.
Bacon
,
S.
Bonella
,
B.
Rotenberg
,
P. A.
Madden
, and
M.
Salanne
, “
MetalWalls: A classical molecular dynamics software dedicated to the simulation of electrochemical systems
,”
J. Open Source Software
5
,
2373
(
2020
).
71.
Q.
Yan
and
J. J.
de Pablo
, “
Hyperparallel tempering Monte Carlo simulation of polymeric systems
,”
J. Chem. Phys.
113
,
1276
1282
(
2000
).
72.
B.
Coasne
,
S. K.
Jain
,
L.
Naamar
, and
K. E.
Gubbins
, “
Freezing of argon in ordered and disordered porous carbon
,”
Phys. Rev. B
76
,
085416
(
2007
).
73.
B.
Coasne
,
J.
Czwartos
,
M.
Sliwinska-Bartkowiak
, and
K. E.
Gubbins
, “
Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores
,”
J. Phys. Chem. B
113
,
13874
13881
(
2009
).
74.
D.
Jin
and
B.
Coasne
, “
Molecular simulation of the phase diagram of methane hydrate: Free energy calculations, direct coexistence method, and hyperparallel tempering
,”
Langmuir
33
,
11217
11230
(
2017
).
You do not currently have access to this content.