Various emerging carbon capture technologies depend on being able to reliably and consistently grow carbon dioxide hydrate, particularly in packed media. However, there are limited kinetic data for carbon dioxide hydrates at this length scale. In this work, carbon dioxide hydrate propagation rates and conversion were evaluated in a high pressure silicon microfluidic device. The carbon dioxide phase boundary was first measured in the microfluidic device, which showed little deviation from bulk predictions. Additionally, measuring the phase boundary takes on the order of hours compared to weeks or longer for larger scale experimental setups. Next, propagation rates of carbon dioxide hydrate were measured in the channels at low subcoolings (<2 K from phase boundary) and moderate pressures (200–500 psi). Growth was dominated by mass transfer limitations until a critical pressure was reached, and reaction kinetics limited growth upon further increases in pressure. Additionally, hydrate conversion was estimated from Raman spectroscopy in the microfluidics channels. A maximum value of 47% conversion was reached within 1 h of a constant flow experiment, nearly 4% of the time required for similar results in a large scale system. The rapid reaction times and high throughput allowed by high pressure microfluidics provide a new way for carbon dioxide gas hydrate to be characterized.

1.
E. D.
β€ˆ
Sloan
and
C. A.
β€ˆ
Koh
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
CRC Press
,
2008
).
2.
P.
β€ˆ
Englezos
,
Ind. Eng. Chem. Res.
β€ˆ
32
,
1251
(
1993
).
3.
E. D.
β€ˆ
Sloan
,
Nature
β€ˆ
426
,
353
(
2003
).
4.
K. A.
β€ˆ
Kvenvolden
and
T. D.
β€ˆ
Lorenson
,
Geophysical Monograph Series
(
American Geophysical Union
,
Washington, DC
,
2001
), Vol. 124, p.
3
.
5.
T. S.
β€ˆ
Collett
,
Am. Assoc. Pet. Geol. Bull.
β€ˆ
86
,
1971
(
2002
).
6.
Y.
β€ˆ
Park
,
D.-Y.
β€ˆ
Kim
,
J.-W.
β€ˆ
Lee
,
D.-G.
β€ˆ
Huh
,
K.-P.
β€ˆ
Park
,
J.
β€ˆ
Lee
, and
H.
β€ˆ
Lee
,
Proc. Natl. Acad. Sci. U. S. A.
β€ˆ
103
,
12690
(
2006
).
7.
F.
β€ˆ
Qanbari
,
M.
β€ˆ
Pooladi-Darvish
,
S.
β€ˆ
Hamed Tabatabaie
, and
S.
β€ˆ
Gerami
,
Energy Proc.
β€ˆ
4
,
3997
(
2011
).
8.
M. K.
β€ˆ
Mondal
,
H. K.
β€ˆ
Balsora
, and
P.
β€ˆ
Varshney
,
Energy
β€ˆ
46
,
431
(
2012
).
9.
E. D.
β€ˆ
Sloan
,
C.
β€ˆ
Koh
, and
A. K.
β€ˆ
Sum
,
Natural Gas Hydrates in Flow Assurance
, 1st ed. (
Elsevier
,
2011
).
10.
M. N.
β€ˆ
Lingelem
,
A. I.
β€ˆ
Majeed
, and
E.
β€ˆ
Stange
,
Ann. N. Y. Acad. Sci.
β€ˆ
715
,
75
(
1994
).
11.
J. J.
β€ˆ
Xiao
,
G.
β€ˆ
Shoup
,
G.
β€ˆ
Hatton
, and
V.
β€ˆ
Kruka
, in
Offshore Technology Conference
(
Society of Petroleum Engineers
,
1998
), p.
161
.
12.
X.
β€ˆ
Lang
,
S.
β€ˆ
Fan
, and
Y.
β€ˆ
Wang
,
J. Nat. Gas Chem.
β€ˆ
19
,
203
(
2010
).
13.
H.
β€ˆ
Mimachi
,
S.
β€ˆ
Takeya
,
A.
β€ˆ
Yoneyama
,
K.
β€ˆ
Hyodo
,
T.
β€ˆ
Takeda
,
Y.
β€ˆ
Gotoh
, and
T.
β€ˆ
Murayama
,
Chem. Eng. Sci.
β€ˆ
118
,
208
(
2014
).
14.
H. P.
β€ˆ
Veluswamy
,
G.
β€ˆ
Bhattacharjee
,
J.
β€ˆ
Liao
, and
P.
β€ˆ
Linga
,
Energy Fuels
β€ˆ
34
,
15257
(
2020
).
15.
H. P.
β€ˆ
Veluswamy
,
R.
β€ˆ
Kumar
, and
P.
β€ˆ
Linga
,
Appl. Energy
β€ˆ
122
,
112
(
2014
).
16.
P.
β€ˆ
Babu
,
P.
β€ˆ
Linga
,
R.
β€ˆ
Kumar
, and
P.
β€ˆ
Englezos
,
Energy
β€ˆ
85
,
261
(
2015
).
17.
A.
β€ˆ
Eslamimanesh
,
A. H.
β€ˆ
Mohammadi
,
D.
β€ˆ
Richon
,
P.
β€ˆ
Naidoo
, and
D.
β€ˆ
Ramjugernath
,
J. Chem. Thermodyn.
β€ˆ
46
,
62
(
2012
).
18.
P.
β€ˆ
Warrier
,
M.
β€ˆ
Naveed Khan
,
M. A.
β€ˆ
Carreon
,
C. J.
β€ˆ
Peters
, and
C. A.
β€ˆ
Koh
,
J. Renewable Sustainable Energy
β€ˆ
10
,
034701
(
2018
).
19.
Y.-N.
β€ˆ
Lv
,
S.-S.
β€ˆ
Wang
,
C.-Y.
β€ˆ
Sun
,
J.
β€ˆ
Gong
, and
G.-J.
β€ˆ
Chen
,
Desalination
β€ˆ
413
,
217
(
2017
).
20.
J.-H.
β€ˆ
Cha
and
Y.
β€ˆ
Seol
,
ACS Sustainable Chem. Eng.
β€ˆ
1
,
1218
(
2013
).
21.
P.
β€ˆ
Englezos
,
N.
β€ˆ
Kalogerakis
,
P. D.
β€ˆ
Dholabhai
, and
P. R.
β€ˆ
Bishnoi
,
Chem. Eng. Sci.
β€ˆ
42
,
2647
(
1987
).
22.
H. C.
β€ˆ
Kim
,
P. R.
β€ˆ
Bishnoi
,
R. A.
β€ˆ
Heidemann
, and
S. S. H.
β€ˆ
Rizvi
,
Chem. Eng. Sci.
β€ˆ
42
,
1645
(
1987
).
23.
Y.
β€ˆ
Shindo
,
P. C.
β€ˆ
Lund
,
Y.
β€ˆ
Fujioka
, and
H.
β€ˆ
Komiyama
,
Int. J. Chem. Kinet.
β€ˆ
25
,
777
(
1993
).
24.
Y.
β€ˆ
Shindo
,
P. C.
β€ˆ
Lund
,
Y.
β€ˆ
Fujioka
, and
H.
β€ˆ
Komiyama
,
Energy Convers. Manage.
β€ˆ
34
,
1073
(
1993
).
25.
M.-K.
β€ˆ
Chun
and
H.
β€ˆ
Lee
,
Korean J. Chem. Eng.
β€ˆ
13
,
620
(
1996
).
26.
T.
β€ˆ
Uchida
,
T.
β€ˆ
Ebinuma
,
J.
β€ˆ
Kawabata
, and
H.
β€ˆ
Narita
,
J. Cryst. Growth
β€ˆ
204
,
348
(
1999
).
27.
D.
β€ˆ
Daniel-David
,
F.
β€ˆ
Guerton
,
C.
β€ˆ
Dicharry
,
J.-P.
β€ˆ
TorrΓ©
, and
D.
β€ˆ
Broseta
,
Chem. Eng. Sci.
β€ˆ
132
,
118
(
2015
).
28.
S.-P.
β€ˆ
Kang
,
J.-W.
β€ˆ
Lee
, and
H.-J.
β€ˆ
Ryu
,
Fluid Phase Equilib.
β€ˆ
274
,
68
(
2008
).
29.
S.-P.
β€ˆ
Kang
,
Y.
β€ˆ
Seo
, and
W.
β€ˆ
Jang
,
Energy Fuels
β€ˆ
23
,
3711
(
2009
).
30.
S. H. B.
β€ˆ
Yang
,
P.
β€ˆ
Babu
,
S. F. S.
β€ˆ
Chua
, and
P.
β€ˆ
Linga
,
Appl. Energy
β€ˆ
162
,
1131
(
2016
).
31.
C.
β€ˆ
Cheng
,
J.
β€ˆ
Zhao
,
Y.
β€ˆ
Song
,
Z.
β€ˆ
Zhu
,
W.
β€ˆ
Liu
,
Y.
β€ˆ
Zhang
,
M.
β€ˆ
Yang
, and
X.
β€ˆ
Yu
,
Sci. China: Earth Sci.
β€ˆ
56
,
611
(
2013
).
32.
G.
β€ˆ
Bhattacharjee
,
A.
β€ˆ
Kumar
,
T.
β€ˆ
Sakpal
, and
R.
β€ˆ
Kumar
,
ACS Sustainable Chem. Eng.
β€ˆ
3
,
1205
(
2015
).
33.
H.
β€ˆ
Ghaedi
,
M.
β€ˆ
Ayoub
,
A. H.
β€ˆ
Bhat
,
S. M.
β€ˆ
Mahmood
,
S.
β€ˆ
Akbari
, and
G.
β€ˆ
Murshid
,
AIP Conf. Proc.
β€ˆ
1787
,
060001
(
2016
).
34.
A.
β€ˆ
Touil
,
D.
β€ˆ
Broseta
,
N.
β€ˆ
Hobeika
, and
R.
β€ˆ
Brown
,
Langmuir
β€ˆ
33
,
10965
(
2017
).
35.
A.
β€ˆ
Touil
,
D.
β€ˆ
Broseta
, and
A.
β€ˆ
Desmedt
,
Langmuir
β€ˆ
35
,
12569
(
2019
).
36.
W.
β€ˆ
Ou
,
W.
β€ˆ
Lu
,
K.
β€ˆ
Qu
,
L.
β€ˆ
Geng
, and
I.-M.
β€ˆ
Chou
,
Int. J. Heat Mass Transfer
β€ˆ
101
,
834
(
2016
).
37.
P.
β€ˆ
Zhu
and
L.
β€ˆ
Wang
,
Lab Chip
β€ˆ
17
,
34
(
2017
).
38.
P. N.
β€ˆ
Nge
,
C. I.
β€ˆ
Rogers
, and
A. T.
β€ˆ
Woolley
,
Chem. Rev.
β€ˆ
113
,
2550
(
2013
).
39.
T.
β€ˆ
Gothsch
,
C.
β€ˆ
Schilcher
,
C.
β€ˆ
Richter
,
S.
β€ˆ
Beinert
,
A.
β€ˆ
Dietzel
,
S.
β€ˆ
BΓΌttgenbach
, and
A.
β€ˆ
Kwade
,
Microfluid. Nanofluid.
β€ˆ
18
,
121
(
2014
).
40.
B.
β€ˆ
Bao
,
J.
β€ˆ
Riordon
,
F.
β€ˆ
Mostowfi
, and
D.
β€ˆ
Sinton
,
Lab Chip
β€ˆ
17
,
2740
(
2017
).
41.
W.
β€ˆ
Chen
,
B.
β€ˆ
Pinho
, and
R. L.
β€ˆ
Hartman
,
Lab Chip
β€ˆ
17
,
3051
(
2017
).
42.
W.
β€ˆ
Chen
and
R. L.
β€ˆ
Hartman
,
Energy Fuels
β€ˆ
32
,
11761
(
2018
).
43.
X.
β€ˆ
Li
,
C.
β€ˆ
Wang
,
S.
β€ˆ
Liang
,
X.
β€ˆ
Guo
, and
Q.
β€ˆ
Sun
,
Chem. Eng. Sci.
β€ˆ
227
,
115937
(
2020
).
44.
Y.
β€ˆ
Chen
,
B.
β€ˆ
Sun
,
L.
β€ˆ
Chen
,
X.
β€ˆ
Wang
,
X.
β€ˆ
Zhao
, and
Y.
β€ˆ
Gao
,
Ind. Eng. Chem. Res.
β€ˆ
58
,
5071
(
2019
).
45.
Y.
β€ˆ
Chen
,
Y.
β€ˆ
Gao
,
N.
β€ˆ
Zhang
,
L.
β€ˆ
Chen
,
X.
β€ˆ
Wang
, and
B.
β€ˆ
Sun
,
Chem. Eng. J.
β€ˆ
383
,
123081
(
2020
).
46.
S.
β€ˆ
Marre
,
A.
β€ˆ
Adamo
,
S.
β€ˆ
Basak
,
C.
β€ˆ
Aymonier
, and
K. F.
β€ˆ
Jensen
,
Ind. Eng. Chem. Res.
β€ˆ
49
,
11310
(
2010
).
47.
S.
β€ˆ
Nakano
,
M.
β€ˆ
Moritoki
, and
K.
β€ˆ
Ohgaki
,
J. Chem. Eng. Data
β€ˆ
43
,
807
(
1998
).
48.
M.
β€ˆ
Pan
,
N. A.
β€ˆ
Ismail
,
M.
β€ˆ
Luzi-Helbing
,
C. A. M.
β€ˆ
Koh
, and
J. M.
β€ˆ
Schicks
,
Energies
β€ˆ
13
,
5908
(
2020
).
49.
See https://www.kbc.global/software/advanced-thermodynamics/ for Multiflash [Computer software], KBC.
50.
See http://hydrates.mines.edu/CHR/Software.html for CSMGEM [Computer software], CHR.
51.
V. A.
β€ˆ
Vlasov
,
A. N.
β€ˆ
Nesterov
, and
A. M.
β€ˆ
Reshetnikov
,
Russ. J. Phys. Chem. A
β€ˆ
94
,
1949
(
2020
).
52.
B.
β€ˆ
Kvamme
,
Energies
β€ˆ
12
,
1039
(
2019
).
53.
J.
β€ˆ
Mullin
,
Crystallization
, 4th ed. (
Butterworth Heinemann
,
2001
).
54.
J. D.
β€ˆ
Wells
,
A. A. A.
β€ˆ
Majid
,
J. L.
β€ˆ
Creek
,
E. D.
β€ˆ
Sloan
,
S. E.
β€ˆ
Borglin
,
T. J.
β€ˆ
Kneafsey
, and
C. A.
β€ˆ
Koh
,
Fuel
β€ˆ
279
,
118430
(
2020
).
55.
J. D.
β€ˆ
Smith
,
C. D.
β€ˆ
Cappa
,
W. S.
β€ˆ
Drisdell
,
R. C.
β€ˆ
Cohen
, and
R. J.
β€ˆ
Saykally
,
J. Am. Chem. Soc.
β€ˆ
128
,
12892
(
2006
).
56.
G. E.
β€ˆ
Walrafen
,
W.-H.
β€ˆ
Yang
, and
Y. C.
β€ˆ
Chu
,
Supercooled Liquids
(
ACS
,
1997
), pp.
287
–
308
.

Supplementary Material

You do not currently have access to this content.