Spatio-temporal oscillations can be induced under batch conditions with ubiquitous bimolecular reactions in the absence of any nonlinear chemical feedback, thanks to an active interplay between the chemical process and chemically driven hydrodynamic flows. When two reactants A and B, initially separated in space, react upon diffusive contact, they can power convective flows by inducing a localized variation of surface tension and density at the mixing interface. These flows feedback with the reaction-diffusion dynamics, bearing damped or sustained spatio-temporal oscillations of the concentrations and flow field. By means of numerical simulations, we detail the mechanism underlying these chemohydrodynamic oscillations and classify the main dynamical scenarios in the relevant space drawn by parameters ΔM and ΔR, which rule the surface tension- and buoyancy-driven contributions to convection, respectively. The reactor height is found to play a critical role in the control of the dynamics. The analysis reveals the intimate nature of these oscillatory phenomena and the hierarchy among the different phenomena at play: oscillations are essentially hydrodynamic and the chemical process features the localized trigger for Marangoni flows unstable toward oscillatory instabilities. The characteristic size of Marangoni convective rolls mainly determines the critical conditions and properties of the oscillations, which can be further tuned or suppressed by the buoyancy competition. We finally discuss the possible experimental implementation of such a class of chemo-hydrodynamic oscillator and its implications in fundamental and applied terms.

1.
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Nonequilibrium Systems
(
Wiley
,
New York
,
1977
).
2.
E.
Pálsson
and
E. C.
Cox
, “
Origin and evolution of circular waves and spirals in dictyostelium discoideum territories
,”
Proc. Natl. Acad. Sci. U. S. A.
93
,
1151
1155
(
1996
).
3.
G.
Kastberger
,
E.
Schmelzer
, and
I.
Kranner
, “
Social waves in giant honeybees repel hornets
,”
PLoS One
3
,
e3141
(
2008
).
4.
A. F.
Taylor
,
M. R.
Tinsley
,
F.
Wang
,
Z.
Huang
, and
K.
Showalter
, “
Dynamical quorum sensing and synchronization in large populations of chemical oscillators
,”
Science
323
,
614
617
(
2009
).
5.
V. K.
Vanag
, “
“Cognitive” modes in small networks of almost identical chemical oscillators with pulsatile inhibitory coupling
,”
Chaos
29
,
033106
(
2019
).
6.
M. A.
Budroni
,
K.
Torbensen
,
S.
Ristori
,
A.
Abou-Hassan
, and
F.
Rossi
, “
Membrane structure drives synchronization patterns in arrays of diffusively coupled self-oscillating droplets
,”
J. Phys. Chem. Lett.
11
,
2014
2020
(
2020
).
7.
K.
Gizynski
and
J.
Gorecki
, “
Cancer classification with a network of chemical oscillators
,”
Phys. Chem. Chem. Phys.
19
,
28808
28819
(
2017
).
8.
P. L.
Gentili
,
M. S.
Giubila
, and
B. M.
Heron
, “
Processing binary and fuzzy logic by chaotic time series generated by a hydrodynamic photochemical oscillator
,”
Chem. Phys. Chem.
18
,
1831
1841
(
2017
).
9.
J.
Horváth
,
I.
Szalai
,
J.
Boissonade
, and
P.
De Kepper
, “
Oscillatory dynamics induced in a responsive gel by a non-oscillatory chemical reaction: Experimental evidence
,”
Soft Matter
7
,
8462
8472
(
2011
).
10.
R.
Yoshida
, “
Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials
,”
Adv. Mater.
22
,
3463
3483
(
2010
).
11.
A.
Isakova
and
K.
Novakovic
, “
Pulsatile release from a flat self-oscillating chitosan macrogel
,”
J. Mater. Chem. B
6
,
5003
5010
(
2018
).
12.
S.
Nakanishi
,
S.-i.
Sakai
,
T.
Nagai
, and
Y.
Nakato
, “
Macroscopically uniform nanoperiod alloy multilayers formed by coupling of electrodeposition with current oscillations
,”
J. Phys. Chem. B
109
,
1750
1755
(
2005
).
13.
T.
Bánsági
,
M. M.
Wrobel
,
S. K.
Scott
, and
A. F.
Taylor
, “
Motion and interaction of aspirin crystals at aqueous-air interfaces
,”
J. Phys. Chem. B
117
,
13572
13577
(
2013
).
14.
M. A.
Budroni
,
E.
Biosa
,
S.
Garroni
,
G. R. C.
Mulas
,
N.
Marchettini
,
N.
Culeddu
, and
M.
Rustici
, “
Understanding oscillatory phenomena in molecular hydrogen generation via sodium borohydride hydrolysis
,”
Phys. Chem. Chem. Phys.
15
,
18664
18670
(
2013
).
15.
M. A.
Budroni
,
S.
Garroni
,
G.
Mulas
, and
M.
Rustici
, “
Bursting dynamics in molecular hydrogen generation via sodium borohydride hydrolysis
,”
J. Phys. Chem. C
121
,
4891
4898
(
2017
).
16.
A. W.
Hauser
,
S.
Sundaram
, and
R. C.
Hayward
, “
Photothermocapillary oscillators
,”
Phys. Rev. Lett.
121
,
158001
(
2018
).
17.
P.
Gray
and
S. K.
Scott
,
Chemical Oscillations and Instabilities. Non-Linear Chemical Kinetics
(
Oxford University Press
,
Oxford, UK
,
1994
).
18.
I. R.
Epstein
and
K.
Showalter
, “
Nonlinear chemical dynamics: Oscillations, patterns and chaos
,”
J. Phys. Chem.
100
,
13132
13147
(
1996
).
19.
R.
Lefever
,
G.
Nicolis
, and
P.
Borckmans
, “
The Brusselator: It does oscillate all the same
,”
J. Chem. Soc., Faraday Trans. 1
84
,
1013
1023
(
1988
).
20.
B. P.
Belousov
, “
A periodic reaction and its mechanism
,” in
Sbornik Referatov po Radiatsonno Meditsine
(
Medgiz
,
Moscow
,
1958
), pp.
145
147
.
21.
I. R.
Epstein
,
K.
Kustin
,
P.
De Kepper
, and
M.
Orbán
, “
Oscillating chemical reactions
,”
Sci. Am.
248
,
112
123
(
1983
).
22.
M. A.
Budroni
,
V.
Upadhyay
, and
L.
Rongy
, “
Making a simple A + B → C reaction oscillate by coupling to hydrodynamic effect
,”
Phys. Rev. Lett.
122
,
244502
(
2019
).
23.
A.
De Wit
,
K.
Eckert
, and
S.
Kalliadasis
, “
Introduction to the focus issue: Chemo-hydrodynamic patterns and instabilities
,”
Chaos
22
,
037101
(
2012
).
24.
J. A.
Pojman
and
I. R.
Epstein
, “
Convective effects on chemical waves. 1. Mechanisms and stability criteria
,”
J. Phys. Chem.
94
,
4966
4972
(
1990
).
25.
D. A.
Vasquez
,
J. W.
Wilder
, and
B. F.
Edwards
, “
Convective turing patterns
,”
Phys. Rev. Lett.
71
,
1538
1541
(
1993
).
26.
L.
Rongy
,
G.
Schuszter
,
Z.
Sinkó
,
T.
Tóth
,
D.
Horváth
,
A.
Tóth
, and
A.
De Wit
, “
Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally
,”
Chaos
19
,
023110
(
2009
).
27.
L.
Rongy
and
A.
De Wit
, “
Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers
,”
J. Chem. Phys.
131
,
184701
(
2009
).
28.
L.
Rongy
,
P.
Assemat
, and
A.
De Wit
, “
Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers
,”
Chaos
22
,
037106
(
2012
).
29.
M. A.
Budroni
,
L.
Rongy
, and
A.
De Wit
, “
Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts
,”
Phys. Chem. Chem. Phys.
14
,
14619
14629
(
2012
).
30.
L.
Šebestíková
and
M. J.
Hauser
, “
Buoyancy-driven convection may switch between reactive states in three-dimensional chemical waves
,”
Phys. Rev. E
85
,
036303
(
2012
).
31.
L.
Rongy
and
A.
De Wit
, “
Steady Marangoni flow traveling with chemical fronts
,”
J. Chem. Phys.
124
,
164705
(
2006
).
32.
L.
Rongy
and
A.
De Wit
, “
Solitary Marangoni-driven convective structures in bistable chemical systems
,”
Phys. Rev. E
77
,
046310
(
2008
).
33.
F.
Rossi
,
M. A.
Budroni
,
N.
Marchettini
, and
J.
Carballido-Landeira
, “
Segmented waves in a reaction-diffusion-convection system
,”
Chaos
22
,
037109
(
2012
).
34.
M. A.
Budroni
,
M.
Masia
,
M.
Rustici
,
N.
Marchettini
, and
V.
Volpert
, “
Bifurcations in spiral tip dynamics induced by natural convection in the Belousovhabotinsky reaction
,”
J. Chem. Phys.
130
,
024902
(
2009
).
35.
L.
Gálfi
and
Z.
Rácz
, “
Properties of the reaction front in an A + B → C type reaction-diffusion process
,”
Phys. Rev. A
38
,
3151
3154
(
1988
).
36.
Z.
Jiang
and
C.
Ebner
, “
Simulation study of reaction fronts
,”
Phys. Rev. A
42
,
7483
7486
(
1990
).
37.
B.
Grzybowski
,
Chemistry in Motion: Reaction-Diffusion Systems for Micro- and Nanotechnology
(
Wiley
,
Chichester, UK
,
2009
).
38.
Q.
Wang
and
O.
Steinbock
, “
Materials synthesis and catalysis in microfluidic devices: Prebiotic chemistry in mineral membranes
,”
ChemCatChem
12
,
63
74
(
2020
).
39.
C.
Almarcha
,
P. M. J.
Trevelyan
,
P.
Grosfils
, and
A.
De Wit
, “
Chemically driven hydrodynamic instabilities
,”
Phys. Rev. Lett.
104
,
044501
(
2010
).
40.
L.
Lemaigre
,
M. A.
Budroni
,
L. A.
Riolfo
,
P.
Grosfils
, and
A.
De Wit
, “
Asymmetric Rayleigh-Taylor and double-diffusive fingers in reactive systems
,”
Phys. Fluids
25
,
014103
(
2013
).
41.
R.
Tiani
and
L.
Rongy
, “
Influence of Marangoni flows on the dynamics of isothermal A + B → C reaction fronts
,”
J. Chem. Phys.
145
,
124701
(
2016
).
42.
R.
Tiani
,
A.
De Wit
, and
L.
Rongy
, “
Surface tension- and buoyancy-driven flows across horizontally propagating chemical fronts
,”
Adv. Colloid Interface Sci.
255
,
76
83
(
2018
).
43.
T.
Gérard
and
A.
De Wit
, “
Miscible viscous fingering induced by a simple A + B → C chemical reaction
,”
Phys. Rev. E
79
,
016308
(
2009
).
44.
L.
Rongy
,
P. M. J.
Trevelyan
, and
A.
De Wit
, “
Dynamics of A + B → C reaction fronts in the presence of buoyancy-driven convection
,”
Phys. Rev. Lett.
101
,
084503
(
2008
).
45.
Y.
Nagatsu
,
Y.
Ishii
,
Y.
Tada
, and
A.
De Wit
, “
Hydrodynamic fingering instability induced by a precipitation reaction
,”
Phys. Rev. Lett.
113
,
024502
(
2014
).
46.
M. A.
Budroni
and
A.
De Wit
, “
Localized stationary and traveling reaction-diffusion patterns in a two-layer A + B → oscillator system
,”
Phys. Rev. E
93
,
062207
(
2016
).
47.
M. A.
Budroni
,
L.
Lemaigre
,
D. M.
Escala
,
A. P.
Muñuzuri
, and
A.
De Wit
, “
Spatially localized chemical patterns around an A + B → oscillator front
,”
J. Phys. Chem. A
120
,
851
860
(
2016
).
48.
D. M.
Escala
,
M. A.
Budroni
,
J.
Carballido-Landeira
,
A.
De Wit
, and
A. P.
Muñuzuri
, “
Self-organized traveling chemo-hydrodynamic fingers triggered by a chemical oscillator
,”
J. Phys. Chem. Lett.
5
,
413
418
(
2014
).
49.
M. A.
Budroni
and
A.
De Wit
, “
Dissipative structures: From reaction-diffusion to chemo-hydrodynamic patterns
,”
Chaos
27
,
104617
(
2017
).
50.
C.
Rana
and
A.
De Wit
, “
Reaction-driven oscillating viscous fingering
,”
Chaos
29
,
043115
(
2019
).
51.
D. W.
Peaceman
and
H. H.
Rachford
, “
The numerical solution of parabolic and elliptic differential equations
,”
J. Soc. Ind. Appl. Math.
3
,
28
(
1955
).
52.
M. K.
Smith
and
S. H.
Davis
, “
Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities
,”
J. Fluid Mech.
132
,
119
144
(
1983
).
53.
N.
Manz
,
S. C.
Müller
, and
O.
Steinbock
, “
Anomalous dispersion of chemical waves in a homogeneously catalyzed reaction system
,”
J. Phys. Chem. A
104
,
5895
5897
(
2000
).
54.
M. A.
Budroni
and
F.
Rossi
, “
A novel mechanism for in situ nucleation of spirals controlled by the interplay between phase fronts and reaction-diffusion waves in an oscillatory medium
,”
J. Phys. Chem. C
119
,
9411
9417
(
2015
).
55.
P.
Ortoleva
and
J.
Ross
, “
Phase waves in oscillatory chemical reactions
,”
J. Chem. Phys.
58
,
5673
5680
(
1973
).
56.
H.
Lamb
,
Hydrodynamics
(
Dover Publications
,
New York
,
1945
).
57.
M. A.
Budroni
,
C.
Thomas
, and
A.
De Wit
, “
Chemical control of dissolution-driven convection in partially miscible systems: Nonlinear simulations and experiments
,”
Phys. Chem. Chem. Phys.
19
,
7936
7946
(
2017
).
58.
S.
Santer
, “
Remote control of soft nano-objects by light using azobenzene containing surfactants
,”
J. Phys. D: Appl. Phys.
51
,
013002
(
2018
).
59.
P. L.
Gentili
,
M.
Dolnik
, and
I. R.
Epstein
, “
Photochemical oscillator: Colored hydrodynamic oscillations and waves in a photochromic system
,”
J. Phys. Chem. C
118
,
598
608
(
2014
).
60.
C.
Fischer
and
A.
Luttge
, “
Pulsating dissolution of crystalline matter
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
897
902
(
2018
).
61.
V. I.
Kovalchuk
,
H.
Kamusewitz
,
D.
Vollhardt
, and
N. M.
Kovalchuk
, “
Auto-oscillation of surface tension
,”
Phys. Rev. E
60
,
2029
2036
(
1999
).
62.
K.
Schwarzenberger
,
S.
Aland
,
H.
Domnick
,
S.
Odenbach
, and
K.
Eckert
, “
Relaxation oscillations of solutal Marangoni convection at curved interfaces
,”
Colloids Surf., A
481
,
633
643
(
2015
).
63.
B.
Nanzai
,
D.
Terashita
,
Y.
Koyano
,
H.
Kitahata
, and
M.
Igawa
, “
Spontaneous electrical oscillation in horizontal three-phase liquid membrane systems: Effect of Marangoni effect induced by buoyant convection
,”
Colloids Surf., A
553
,
496
502
(
2018
).

Supplementary Material

You do not currently have access to this content.