We investigate the role of intramolecular normal mode vibrations in the excitation energy transfer (EET) dynamics of perylene bisimide J-aggregates composed of 2 or 25 units using numerically exact methods. The calculations employ a Frenkel exciton Hamiltonian where the ground and excited electronic states of each molecular unit are coupled to 28 intramolecular normal mode vibrations at various temperatures. The electronic populations exhibit strong damping effects, a lengthening of the EET time scale, and complex dynamical patterns, which depend on aggregate length, temperature, as well as electronic and vibrational initial conditions and which are not additive. The early evolution is dominated by high-frequency vibrational modes, but all modes are responsible for the observed dynamics after the initial 25 fs. Overall, we observe significant changes in the electronic populations upon varying the temperature between 0 and 600 K. With a Franck–Condon (FC) initial excitation, a strongly coupled vibrational mode introduces new peaks to the dimer populations, which show very weak temperature sensitivity. The first of these peaks is also seen in the long aggregate, but subsequent recurrences appear strongly quenched and merged. These structures are drastically altered if a non-FC initial condition is assumed. Additional insights are obtained from the diagonal elements of the dimer electronic-vibrational reduced density matrix. We find that the vibronic peaks result from depletion of the crossing region during the early coherent evolution of the vibrational density away from the crossing point, which allows the premature back-transfer of excitation to the initially excited unit.

2.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 3rd ed. (
Wiley
,
2011
).
3.
M.
Schröter
,
S. D.
Ivanov
,
J.
Schulze
,
S. P.
Polyutov
,
Y.
Yan
,
T.
Pullerits
, and
O.
Kühn
,
Phys. Rep.
567
,
1
78
(
2015
).
4.
K.
Huang
and
A.
Rhys
,
Proc. R. Soc. London, Ser. A
204
(
1078
),
406
(
1950
).
5.
F.
Würthner
,
C.
Thalacker
,
S.
Diele
, and
C.
Tschierske
,
Chem. - Eur. J.
7
(
10
),
2245
2253
(
2001
).
6.
T. E.
Kaiser
,
H.
Wang
,
V.
Stepanenko
, and
F.
Würthner
,
Angew. Chem., Int. Ed.
46
(
29
),
5541
5544
(
2007
).
7.
F.
Würthner
,
T. E.
Kaiser
, and
C. R.
Saha-Möller
,
Angew. Chem., Int. Ed.
50
,
3376
3410
(
2011
).
8.
R. K.
Dubey
,
S. J.
Eustace
,
J. S.
van Mullem
,
E. J. R.
Sudhölter
,
F. C.
Grozema
, and
W. F.
Jager
,
J. Org. Chem.
84
(
15
),
9532
9547
(
2019
).
9.
F.
Würthner
,
C. R.
Saha-Möller
,
B.
Fimmel
,
S.
Ogi
,
P.
Leowanawat
, and
D.
Schmidt
,
Chem. Rev.
116
(
3
),
962
1052
(
2016
).
10.
G.
Bressan
,
D.
Green
,
Y.
Chan
,
P. C.
Bulman Page
,
G. A.
Jones
,
S. R.
Meech
, and
I. A.
Heisler
,
J. Phys. Chem. A
123
(
8
),
1594
1601
(
2019
).
11.
X.-Q.
Li
,
X.
Zhang
,
S.
Ghosh
, and
F.
Würthner
,
Chem. - Eur. J.
14
(
27
),
8074
8078
(
2008
).
12.
D.
Ambrosek
,
A.
Köhn
,
J.
Schulze
, and
O.
Kühn
,
J. Phys. Chem. A
116
(
46
),
11451
11458
(
2012
).
13.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
105
(
2000
).
14.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
(
3
),
1289
1299
(
2003
).
15.
U.
Schollwöck
,
Ann. Phys.
326
,
96
192
(
2011
).
16.
J.
Ren
,
Z.
Shuai
, and
G.
Kin-Lic Chan
,
J. Chem. Theory Comput.
14
(
10
),
5027
5039
(
2018
).
17.
S.
Kundu
and
N.
Makri
,
J. Phys. Chem. C
125
,
201
210
(
2021
).
18.
A.
Bose
and
N.
Makri
,
J. Phys. Chem.
124
,
5028
5038
(
2020
).
19.
R. P.
Feynman
,
Rev. Mod. Phys.
20
,
367
387
(
1948
).
20.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
21.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
4610
(
1995
).
22.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
4618
(
1995
).
23.
N.
Makri
,
J. Phys. Chem.
102
,
4414
4427
(
1998
).
24.
N.
Makri
,
J. Chem. Phys.
152
,
041104
(
2020
).
25.
N.
Makri
,
J. Chem. Theory Comput.
16
,
4038
4049
(
2020
).
26.
N.
Makri
,
J. Chem. Theory Comput.
17
,
1
6
(
2021
).
27.
N.
Makri
,
J. Math. Phys.
36
,
2430
2456
(
1995
).
28.
R. P.
Feynman
and
F. L.
Vernon
, Jr.
,
Ann. Phys.
24
,
118
173
(
1963
).
29.
G.
Ilk
and
N.
Makri
,
J. Chem. Phys.
101
,
6708
(
1994
).
30.
N.
Makri
,
J. Chem. Phys.
148
,
101101
(
2018
).
31.
N.
Makri
,
J. Chem. Phys.
149
,
214108
(
2018
).
32.
S.
Kundu
and
N.
Makri
,
Mol. Phys.
2020
,
1
14
.
33.
S.
Kundu
and
N.
Makri
,
J. Chem. Phys.
151
,
074110
(
2019
).
34.
S.
Kundu
and
N.
Makri
,
J. Chem. Phys.
153
,
044124
(
2020
).
35.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys.
149
(
2
),
374
456
(
1983
).
36.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
85
(
1987
).
37.
N.
Makri
,
Chem. Phys. Lett.
593
,
93
103
(
2014
).
38.
R.
Silbey
and
R. A.
Harris
,
J. Chem. Phys.
80
,
2615
2617
(
1983
).
39.
S.
Kundu
and
N.
Makri
,
J. Phys. Chem. Lett.
11
,
8783
8789
(
2020
).
You do not currently have access to this content.