We have developed a software package, namely, PASP (Property Analysis and Simulation Package for materials), to analyze the structural, electronic, magnetic, and thermodynamic properties of complex condensed matter systems. Our package integrates several functionalities including symmetry analysis, global structure searching methods, effective Hamiltonian methods, and Monte Carlo simulation methods. In conjunction with first-principles calculations, PASP has been successfully applied to diverse physical systems. In this paper, we give a brief introduction to its main features and underlying theoretical formulism. Some typical applications are provided to demonstrate the usefulness, high efficiency, and reliability of PASP. We expect that further developments will make PASP a general-purpose tool for material simulation and property calculation of condensed matters.

1.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
CALYPSO: A method for crystal structure prediction
,”
Comput. Phys. Commun.
183
,
2063
2070
(
2012
).
2.
C. W.
Glass
,
A. R.
Oganov
, and
N.
Hansen
, “
USPEX: Evolutionary crystal structure prediction
,”
Comput. Phys. Commun.
175
,
713
720
(
2006
).
3.
A.
van de Walle
,
M.
Asta
, and
G.
Ceder
, “
The alloy theoretic automated toolkit: A user guide
,”
Galphad
26
,
539
553
(
2002
).
4.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
A.
Jorio
,
Group Theory: Application to the Physics of Condensed Matter
(
Springer-Verlag
,
2008
).
5.
L.
Fu
and
C. L.
Kane
, “
Topological insulators with inversion symmetry
,”
Phys. Rev. B
76
,
045302
(
2007
).
6.
K.
Liu
,
W.
Luo
,
J.
Ji
,
P.
Barone
,
S.
Picozzi
, and
H.
Xiang
, “
Band splitting with vanishing spin polarizations in noncentrosymmetric crystals
,”
Nat. Commun.
10
,
5144
(
2019
).
7.
W.
Luo
,
J.
Ji
,
J.
Lu
,
X.
Zhang
, and
H.
Xiang
, “
Two-dimensional topological semimetals protected by symmorphic symmetries
,”
Phys. Rev. B
101
,
195111
(
2020
).
8.
C. J.
Pickard
and
R. J.
Needs
, “
Ab initio random structure searching
,”
J. Phys.: Condens. Matter
23
,
053201
(
2011
).
9.
Y.-Y.
Zhang
,
W.
Gao
,
S.
Chen
,
H.
Xiang
, and
X.-G.
Gong
, “
Inverse design of materials by multi-objective differential evolution
,”
Comput. Mater. Sci.
98
,
51
55
(
2015
).
10.
A. R.
Oganov
and
C. W.
Glass
, “
Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
,”
J. Chem. Phys.
124
,
244704
(
2006
).
11.
T.
Gu
,
W.
Luo
, and
H.
Xiang
, “
Prediction of two-dimensional materials by the global optimization approach
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
,
e1295
(
2017
).
12.
X.
Luo
,
J.
Yang
,
H.
Liu
,
X.
Wu
,
Y.
Wang
,
Y.
Ma
,
S.-H.
Wei
,
X.
Gong
, and
H.
Xiang
, “
Predicting two-dimensional boron-carbon compounds by the global optimization method
,”
J. Am. Chem. Soc.
133
,
16285
16290
(
2011
).
13.
D. J.
Wales
and
J. P. K.
Doye
, “
Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms
,”
J. Phys. Chem. A
101
,
5111
5116
(
1997
).
14.
H.
Xiang
,
S.-H.
Wei
, and
X.
Gong
, “
Structures of [Ag7(SR)4] and [Ag7(DMSA)4]
,”
J. Am. Chem. Soc.
132
,
7355
7360
(
2010
).
15.
H. J.
Xiang
,
J. L. F.
Da Silva
,
H. M.
Branz
, and
S.-H.
Wei
, “
Understanding the clean interface between covalent Si and ionic Al2O3
,”
Phys. Rev. Lett.
103
,
116101
(
2009
).
16.
F.
Lou
,
W.
Luo
,
J.
Feng
, and
H.
Xiang
, “
Genetic algorithm prediction of pressure-induced multiferroicity in the perovskite PbCoO3
,”
Phys. Rev. B
99
,
205104
(
2019
).
17.
D. M.
Deaven
and
K. M.
Ho
, “
Molecular-geometry optimization with a genetic algorithm
,”
Phys. Rev. Lett.
75
,
288
291
(
1995
).
18.
X.-Z.
Lu
and
J. M.
Rondinelli
, “
Epitaxial-strain-induced polar-to-nonpolar transitions in layered oxides
,”
Nat. Mater.
15
,
951
955
(
2016
).
19.
X. Z.
Lu
,
X. G.
Gong
, and
H. J.
Xiang
, “
Polarization enhancement in perovskite superlattices by oxygen octahedral tilts
,”
Comput. Mater. Sci.
91
,
310
314
(
2014
).
20.
P. S.
Wang
,
W.
Ren
,
L.
Bellaiche
, and
H. J.
Xiang
, “
Predicting a ferrimagnetic phase of Zn2FeOsO6 with strong magnetoelectric coupling
,”
Phys. Rev. Lett.
114
,
147204
(
2015
).
21.
J. W.
Guo
,
P. S.
Wang
,
Y.
Yuan
,
Q.
He
,
J. L.
Lu
,
T. Z.
Chen
,
S. Z.
Yang
,
Y. J.
Wang
,
R.
Erni
,
M. D.
Rossell
,
V.
Gopalan
,
H. J.
Xiang
,
Y.
Tokura
, and
P.
Yu
, “
Strain-induced ferroelectricity and spin-lattice coupling in SrMnO3 thin films
,”
Phys. Rev. B
97
,
235135
(
2018
).
22.
J. S.
Feng
,
K.
Xu
,
L.
Bellaiche
, and
H. J.
Xiang
, “
Designing switchable near room-temperature multiferroics via the discovery of a novel magnetoelectric coupling
,”
New J. Phys.
20
,
053025
(
2018
).
23.
Y. S.
Hou
,
H. J.
Xiang
, and
X. G.
Gong
, “
Intrinsic insulating ferromagnetism in manganese oxide thin films
,”
Phys. Rev. B
89
,
064415
(
2014
).
24.
K.
Xu
,
X.-Z.
Lu
, and
H.
Xiang
, “
Designing new ferroelectrics with a general strategy
,”
npj Quantum Mater.
2
,
1
(
2017
).
25.
S.
Konschuh
,
M.
Gmitra
, and
J.
Fabian
, “
Tight-binding theory of the spin-orbit coupling in graphene
,”
Phys. Rev. B
82
,
245412
(
2010
).
26.
V. M.
Pereira
,
A. H.
Castro Neto
, and
N. M. R.
Peres
, “
Tight-binding approach to uniaxial strain in graphene
,”
Phys. Rev. B
80
,
045401
(
2009
).
27.
S.
Reich
,
J.
Maultzsch
,
C.
Thomsen
, and
P.
Ordejón
, “
Tight-binding description of graphene
,”
Phys. Rev. B
66
,
035412
(
2002
).
28.
F.
Zahid
,
L.
Liu
,
Y.
Zhu
,
J.
Wang
, and
H.
Guo
, “
A generic tight-binding model for monolayer, bilayer and bulk MoS2
,”
AIP Adv.
3
,
052111
(
2013
).
29.
E.
Ridolfi
,
D.
Le
,
T. S.
Rahman
,
E. R.
Mucciolo
, and
C. H.
Lewenkopf
, “
A tight-binding model for MoS2 monolayers
,”
J. Phys.: Condens. Matter
27
,
365501
(
2015
).
30.
J. C.
Slater
and
G. F.
Koster
, “
Simplified LCAO method for the periodic potential problem
,”
Phys. Rev.
94
,
1498
(
1954
).
31.
W. A.
Harrison
,
Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond
(
Courier Corporation
,
1989
).
32.
C.
Kittle
,
Introduction to Solid State Physics
, 7th ed. (
Wiley India Pvt. Limited
,
2007
).
33.
W.
Harrison
,
Elementary Electronic Structure
(
World Scientific Publishing Company
,
1999
).
34.
J.
Masek
,
B.
Velicky
, and
V.
Janis
, “
A tight binding study of the electronic structure of MnTe
,”
J. Phys. C: Solid State Phys.
20
,
59
(
1987
).
35.
S.
Fang
,
R. K.
Defo
,
S. N.
Shirodkar
,
S.
Lieu
,
G. A.
Tritsaris
, and
E.
Kaxiras
, “
Ab initio tight-binding Hamiltonian for transition metal dichalcogenides
,”
Phys. Rev. B
92
,
205108
(
2015
).
36.
G.
Allan
, “
Surface electronic structure of antiferromagnetic chromium
,”
Surf. Sci.
74
,
79
88
(
1978
).
37.
K.
Liu
,
J.
Lu
,
S.
Picozzi
,
L.
Bellaiche
, and
H.
Xiang
, “
Intrinsic origin of enhancement of ferroelectricity in SnTe ultrathin films
,”
Phys. Rev. Lett.
121
,
027601
(
2018
).
38.
C.
Xu
,
J.
Feng
,
H.
Xiang
, and
L.
Bellaiche
, “
Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers
,”
npj Comput. Mater.
4
,
57
(
2018
).
39.
H. J.
Xiang
,
E. J.
Kan
,
Y.
Zhang
,
M.-H.
Whangbo
, and
X. G.
Gong
, “
General theory for the ferroelectric polarization induced by spin-spiral order
,”
Phys. Rev. Lett.
107
,
157202
(
2011
).
40.
H.
Xiang
,
C.
Lee
,
H.-J.
Koo
,
X.
Gong
, and
M.-H.
Whangbo
, “
Magnetic properties and energy-mapping analysis
,”
Dalton Trans.
42
,
823
853
(
2013
).
41.
H. J.
Xiang
,
E. J.
Kan
,
S.-H.
Wei
,
M.-H.
Whangbo
, and
X. G.
Gong
, “
Predicting the spin-lattice order of frustrated systems from first principles
,”
Phys. Rev. B
84
,
224429
(
2011
).
42.
J. H.
Yang
,
Z. L.
Li
,
X. Z.
Lu
,
M.-H.
Whangbo
,
S.-H.
Wei
,
X. G.
Gong
, and
H. J.
Xiang
, “
Strong Dzyaloshinskii–Moriya interaction and origin of ferroelectricity in Cu2OSeO3
,”
Phys. Rev. Lett.
109
,
107203
(
2012
).
43.
X. Z.
Lu
,
M.-H.
Whangbo
,
S.
Dong
,
X. G.
Gong
, and
H. J.
Xiang
, “
Giant ferroelectric polarization of CaMn7O12 induced by a combined effect of Dzyaloshinskii–Moriya interaction and exchange striction
,”
Phys. Rev. Lett.
108
,
187204
(
2012
).
44.
C.
Xu
,
J.
Feng
,
M.
Kawamura
,
Y.
Yamaji
,
Y.
Nahas
,
S.
Prokhorenko
,
Y.
Qi
,
H.
Xiang
, and
L.
Bellaiche
, “
Possible Kitaev quantum spin liquid state in 2D materials with S = 3/2
,”
Phys. Rev. Lett.
124
,
087205
(
2020
).
45.
C.
Xu
,
J.
Feng
,
S.
Prokhorenko
,
Y.
Nahas
,
H.
Xiang
, and
L.
Bellaiche
, “
Topological spin texture in Janus monolayers of the chromium trihalides Cr(I,X)3
,”
Phys. Rev. B
101
,
060404
(
2020
).
46.
J. Y.
Ni
,
P. S.
Wang
,
J. L.
Lu
, and
H. J.
Xiang
, “
Realizing magnetoelectric coupling with hydrogen intercalation
,”
Phys. Rev. Lett.
122
,
117601
(
2019
).
47.
C.
Xu
,
B.
Xu
,
B.
Dupe
, and
L.
Bellaiche
, “
Magnetic interactions in BiFeO3: A first-principles study
,”
Phys. Rev. B
99
,
104420
(
2019
).
48.
B.
Xu
,
B.
Dupé
,
C.
Xu
,
H.
Xiang
, and
L.
Bellaiche
, “
Revisiting spin cycloids in multiferroic BiFeO3
,”
Phys. Rev. B
98
,
184420
(
2018
).
49.
K.
Xu
,
J. S.
Feng
,
Z. P.
Liu
, and
H. J.
Xiang
, “
Origin of ferrimagnetism and ferroelectricity in room-temperature multiferroic ε-Fe2O3
,”
Phys. Rev. Appl.
9
,
044011
(
2018
).
50.
Y. S.
Hou
,
H. J.
Xiang
, and
X. G.
Gong
, “
Unveiling the origin of the basal-plane antiferromagnetism in the spin-orbit Mott insulator Ba2IrO4: A density functional and model Hamiltonian study
,”
New J. Phys.
18
,
043007
(
2016
).
51.
P. S.
Wang
,
X. Z.
Lu
,
X. G.
Gong
, and
H. J.
Xiang
, “
Microscopic mechanism of spin-order induced improper ferroelectric polarization
,”
Comput. Mater. Sci.
112
,
448
458
(
2016
).
52.
K.
Liu
,
Y.
Hou
,
X.
Gong
, and
H.
Xiang
, “
Orbital delocalization and enhancement of magnetic interactions in perovskite oxyhydrides
,”
Sci. Rep.
6
,
19653
(
2016
).
53.
H.-F.
Zhu
,
H.-Y.
Cao
,
Y.
Xie
,
Y.-S.
Hou
,
S.
Chen
,
H.
Xiang
, and
X.-G.
Gong
, “
Giant biquadratic interaction-induced magnetic anisotropy in the iron-based superconductor AxFe2-ySe2
,”
Phys. Rev. B
93
,
024511
(
2016
).
54.
Y. S.
Hou
,
H. J.
Xiang
, and
X. G.
Gong
, “
Lattice-distortion induced magnetic transition from low-temperature antiferromagnetism to high-temperature ferrimagnetism in double perovskites A2FeOsO6 (A = Ca, Sr)
,”
Sci. Rep.
5
,
13159
(
2015
).
55.
X. Z.
Lu
,
X.
Wu
, and
H. J.
Xiang
, “
General microscopic model of magnetoelastic coupling from first principles
,”
Phys. Rev. B
91
,
100405
(
2015
).
56.
Y. S.
Hou
,
J. H.
Yang
,
X. G.
Gong
, and
H. J.
Xiang
, “
Prediction of a multiferroic state with large electric polarization in tensile-strained TbMnO3
,”
Phys. Rev. B
88
,
060406
(
2013
).
57.
H. J.
Xiang
,
P. S.
Wang
,
M.-H.
Whangbo
, and
X. G.
Gong
, “
Unified model of ferroelectricity induced by spin order
,”
Phys. Rev. B
88
,
054404
(
2013
).
58.
W.
Zhong
,
D.
Vanderbilt
, and
K. M.
Rabe
, “
First-principles theory of ferroelectric phase transitions for perovskite: The case of BaTiO3
,”
Phys. Rev. B
52
,
6301
6312
(
1995
).
59.
L.
Bellaiche
,
A.
García
, and
D.
Vanderbilt
, “
Finite-temperature properties of Pb(Zr1−xTix)O3 alloys from first principles
,”
Phys. Rev. Lett.
84
,
5427
5430
(
2000
).
60.
K.
Chang
,
J.
Liu
,
H.
Lin
,
N.
Wang
,
K.
Zhao
,
A.
Zhang
,
F.
Jin
,
Y.
Zhong
,
X.
Hu
,
W.
Duan
,
Q.
Zhang
,
L.
Fu
,
Q.-K.
Xue
,
X.
Chen
, and
S.-H.
Ji
, “
Discovery of robust in-plane ferroelectricity in atomic-thick SnTe
,”
Science
353
,
274
278
(
2016
).
61.
S.-W.
Cheong
and
M.
Mostovoy
, “
Multiferroics: A magnetic twist for ferroelectricity
,”
Nat. Mater.
6
,
13
20
(
2007
).
62.
S.
Dong
,
H.
Xiang
, and
E.
Dagotto
, “
Magnetoelectricity in multiferroics: A theoretical perspective
,”
Nat. Sci. Rev.
6
,
629
641
(
2019
).
63.
J. S.
Feng
and
H. J.
Xiang
, “
Anisotropic symmetric exchange as a new mechanism for multiferroicity
,”
Phys. Rev. B
93
,
174416
(
2016
).
64.
N. S.
Fedorova
,
C.
Ederer
,
N. A.
Spaldin
, and
A.
Scaramucci
, “
Biquadratic and ring exchange interactions in orthorhombic perovskite manganites
,”
Phys. Rev. B
91
,
165122
(
2015
).
65.
X.-Y.
Li
,
F.
Lou
,
X.-G.
Gong
, and
H.
Xiang
, “
Constructing realistic effective spin Hamiltonians with machine learning approaches
,”
New J. Phys.
22
,
053036
(
2020
).
66.
G.
Carleo
,
I.
Cirac
,
K.
Cranmer
,
L.
Daudet
,
M.
Schuld
,
N.
Tishby
,
L.
Vogt-Maranto
, and
L.
Zdeborova
, “
Machine learning and the physical sciences
,”
Rev. Mod. Phys.
91
,
045002
(
2019
).
67.
J.
Schmidt
,
M. R. G.
Marques
,
S.
Botti
, and
M. A. L.
Marques
, “
Recent advances and applications of machine learning in solid-state materials science
,”
npj Comput. Mater.
5
,
83
(
2019
).
68.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
219901
(
2016
).
69.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Kopf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
Advances in Neural Information Processing Systems 322019
, edited by
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d’Alche-Buc
,
E.
Fox
, and
R.
Garnett
(
NIPS
,
2019
).
70.
S.
Ioffe
and
C.
Szegedy
, “
Batch normalization: Accelerating deep network training by reducing internal covariate shift
,” in
Proceedings of the 32nd International Conference on Machine Learning, PMLR, Proceedings of Machine Learning Research
, edited by
B.
Francis
and
B.
David
(
PMLR
,
2015
), pp.
448
456
.
71.
B. A.
Berg
and
T.
Neuhaus
, “
Multicanonical algorithms for first order phase transition
,”
Phys. Lett. B
267
,
249
253
(
1991
).
72.
A. P.
Lyubartsev
,
A. A.
Martsinovski
,
S. V.
Shevkunov
, and
P. N.
Vorontsov-Velyaminov
, “
New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles
,”
J. Chem. Phys.
96
,
1776
1783
(
1992
).
73.
K.
Hukushima
and
K.
Nemoto
, “
Exchange Monte Carlo method and application to spin glass simulations
,”
J. Phys. Soc. Jpn.
65
,
1604
1608
(
1996
).
74.
U. H. E.
Hansmann
, “
Parallel tempering algorithm for conformational studies of biological molecules
,”
Chem. Phys. Lett.
281
,
140
150
(
1997
).
75.
Y.
Miyatake
,
M.
Yamamoto
,
J. J.
Kim
,
M.
Toyonaga
, and
O.
Nagai
, “
On the implementation of the heat bath algorithms for Monte Carlo simulations of classical Heisenberg spin systems
,”
J. Phys. C: Solid State Phys.
19
,
2539
2546
(
1986
).
76.
M. R.
Hestenes
and
E.
Stiefel
, “
Methods of conjugate gradients for solving linear systems
,”
J. Res. Natl. Bur. Stand.
49
,
409
436
(
1952
).
77.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
(
1996
).
78.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
You do not currently have access to this content.