Controlling energy transfer through vibronic resonance is an interesting possibility. Exact treatment of non-adiabatic vibronic coupling is necessary to fully capture its role in driving energy transfer. However, the exact treatment of vibrations in extended systems is expensive, sometimes requiring oversimplifying approximations to reduce vibrational dimensionality, and do not provide physical insights into which specific vibrational motions promote energy transfer. In this communication, we derive effective normal modes for understanding vibronically enhanced energy transfer in excitonically coupled aggregates. We show that the dynamics of the overall high-dimensional vibronic Hamiltonian can be better understood through one-dimensional Hamiltonians separable along these effective modes. We demonstrate this approach on a trimer toy model to analyze the role of an intermediate “trap” site in mediating energy transfer between electronically uncoupled sites. Bringing uncoupled sites into vibronic resonance converts the “trap” into a “shuttle” for energy transfer. By deconvolving the dynamics along the aggregate normal modes, our approach identifies the specific vibrational motions, which maximally promote energy transfer, against spectator modes, which do not participate in vibronic mixing.

1.
P. J. M.
Johnson
,
A.
Halpin
,
T.
Morizumi
,
V. I.
Prokhorenko
,
O. P.
Ernst
, and
R. J. D.
Miller
, “
Local vibrational coherences drive the primary photochemistry of vision
,”
Nat. Chem.
7
,
980
986
(
2015
).
2.
A. J.
Musser
,
M.
Liebel
,
C.
Schnedermann
,
T.
Wende
,
T. B.
Kehoe
,
A.
Rao
, and
P.
Kukura
, “
Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission
,”
Nat. Phys.
11
,
352
357
(
2015
).
3.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
, “
Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
1203
1208
(
2013
).
4.
H.
Okamoto
,
K.
Ikegami
,
T.
Wakabayashi
,
Y.
Ishige
,
J.
Togo
,
H.
Kishida
, and
H.
Matsuzaki
, “
Ultrafast photoinduced melting of a spin-peierls phase in an organic charge-transfer compound, K-tetracyanoquinodimethane
,”
Phys. Rev. Lett.
96
,
037405
(
2006
).
5.
A. S.
Rury
,
S. A.
Sorenson
, and
J. M.
Dawlaty
, “
Evidence of ultrafast charge transfer driven by coherent lattice vibrations
,”
J. Phys. Chem. Lett.
8
,
181
187
(
2017
).
6.
C. C.
Rich
and
R. R.
Frontiera
, “
Uncovering the functional role of coherent phonons during the photoinduced phase transition in a molecular crystal
,”
J. Phys. Chem. Lett.
11
(
18
),
7502
7509
(
2020
).
7.
R.
Long
and
O. V.
Prezhdo
, “
Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals junction
,”
Nano Lett.
16
,
1996
2003
(
2016
).
8.
D.
Nicoletti
and
A.
Cavalleri
, “
Nonlinear light–matter interaction at terahertz frequencies
,”
Adv. Opt. Photonics
8
,
401
464
(
2016
).
9.
A. W.
Chin
,
J.
Prior
,
R.
Rosenbach
,
F.
Caycedo-Soler
,
S. F.
Huelga
, and
M. B.
Plenio
, “
The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes
,”
Nat. Phys.
9
,
012510
(
2013
).
10.
N.
Christensson
,
H. F.
Kauffmann
,
T.
Pullerits
, and
T.
Mančal
, “
Origin of long-lived coherences in light-harvesting complexes
,”
J. Phys. Chem. B
116
,
7449
7454
(
2012
).
11.
P.
Nalbach
,
C. A.
Mujica-Martinez
, and
M.
Thorwart
, “
Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex
,”
Phys. Rev. E
91
,
022706
(
2015
).
12.
E. K.
Irish
,
R.
Gómez-Bombarelli
, and
B. W.
Lovett
, “
Vibration-assisted resonance in photosynthetic excitation-energy transfer
,”
Phys. Rev. A
90
,
012510
(
2014
).
13.
A. G.
Dijkstra
,
C.
Wang
,
J.
Cao
, and
G. R.
Fleming
, “
Coherent exciton dynamics in the presence of underdamped vibrations
,”
J. Phys. Chem. Lett.
6
,
627
632
(
2015
).
14.
F. D.
Fuller
,
J.
Pan
,
A.
Gelzinis
,
V.
Butkus
,
S. S.
Senlik
,
D. E.
Wilcox
,
C. F.
Yocum
,
L.
Valkunas
,
D.
Abramavicius
, and
J. P.
Ogilvie
, “
Vibronic coherence in oxygenic photosynthesis
,”
Nat. Chem.
6
,
706
711
(
2014
).
15.
R.
Elisabet
,
R.
Augulis
,
V. I.
Novoderezhkin
,
M.
Ferretti
,
J.
Thieme
,
D.
Zigmantas
, and
R.
van Grondelle
, “
Quantum coherence in photosynthesis for efficient solar-energy conversion
,”
Nat. Phys.
10
,
676
682
(
2014
).
16.
J. C.
Dean
,
T.
Mirkovic
,
Z. S. D.
Toa
,
D. G.
Oblinsky
, and
G. D.
Scholes
, “
Vibronic enhancement of algae light harvesting
,”
Chem
1
,
858
872
(
2014
).
17.
D. M.
Jonas
, “
Two-dimensional femtosecond spectroscopy
,”
Annu. Rev. Phys. Chem.
54
,
425
463
(
2003
).
18.
V.
Tiwari
and
D. M.
Jonas
, “
Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer
,”
J. Chem. Phys.
148
,
084308
(
2018
).
19.
A.
Sahu
,
J. S.
Kurian
, and
V.
Tiwari
, “
Vibronic resonance is inadequately described by one-particle basis sets
,”
J. Chem. Phys.
153
,
224114
(
2020
).
20.
J.
Schulze
,
M. F.
Shibl
,
M. J.
Al-Marri
, and
O.
Kühn
, “
The effect of site-specific spectral densities on the high-dimensional exciton-vibrational dynamics in the FMO complex
,”
Chem. Phys.
497
,
10
16
(
2017
).
21.
M.
Polkehn
,
H.
Tamura
, and
I.
Burghardt
, “
Impact of charge-transfer excitons in regioregular polythiophene on the charge separation at polythiophene-fullerene heterojunctions
,”
J. Phys. B: At., Mol. Opt. Phys.
51
,
014003
(
2017
).
22.
S.
Kundu
and
N.
Makri
, “
Real-time path integral simulation of exciton-vibration dynamics in light-harvesting bacteriochlorophyll aggregates
,”
J. Phys. Chem. Lett.
11
(
20
),
8783
8789
(
2020
).
23.
W.
Popp
,
M.
Polkehn
,
K. H.
Hughes
,
R.
Martinazzo
, and
I.
Burghardt
, “
Vibronic coupling models for donor-acceptor aggregates using an effective-mode scheme: Application to mixed Frenkel and charge-transfer excitons in oligothiophene aggregates
,”
J. Chem. Phys.
150
,
244114
(
2019
).
24.
M. R.
Philpott
, “
Weak-coupling theory of the vibrational structure of molecular exciton states
,”
J. Chem. Phys.
47
,
2534
2544
(
1967
).
25.
J.
Roden
,
G.
Schulz
,
A.
Eisfeld
, and
J.
Briggs
, “
Electronic energy transfer on a vibronically coupled quantum aggregate
,”
J. Chem. Phys.
131
,
044909
(
2009
).
26.
A.
Witkowski
and
W.
Moffitt
, “
Electronic spectra of dimers: Derivation of the fundamental vibronic equation
,”
J. Chem. Phys.
33
,
872
875
(
1960
).
27.
R. L.
Fulton
and
M.
Gouterman
, “
Vibronic coupling. I. Mathematical treatment for two electronic states
,”
J. Chem. Phys.
35
,
1059
1071
(
1961
).
28.
T.
Förster
,
Modern Quantum Chemistry
, edited by
O.
Sinanoglŭ
(
Academic Press, New York
,
1965
), p.
93
.
29.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
, “
Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer
,”
J. Chem. Phys.
147
,
154308
(
2017
).
30.
L. S.
Cederbaum
,
E.
Gindensperger
, and
I.
Burghardt
, “
Short-time dynamics through conical intersections in macrosystems
,”
Phys. Rev. Lett.
94
,
113003
(
2005
).
31.
V.
Chernyak
and
S.
Mukamel
, “
Collective coordinates for nuclear spectral densities in energy transfer and femtosecond spectroscopy of molecular aggregates
,”
J. Chem. Phys.
105
,
4565
4583
(
1996
).
32.
J.
Seibt
and
T.
Mančal
, “
Treatment of Herzberg-Teller and non-condon effects in optical spectra with hierarchical equations of motion
,”
Chem. Phys.
515
,
129
140
(
2018
), part of special issue on: Ultrafast Photoinduced Processes in Polyatomic Molecules: Electronic Structure, Dynamics and Spectroscopy (Dedicated to Wolfgang Domcke on the occasion of his 70th birthday).
33.
W. T.
Simpson
and
D. L.
Peterson
, “
Coupling strength for resonance force transfer of electronic energy in van der Waals solids
,”
J. Chem. Phys.
26
,
588
593
(
1957
).
34.
J. R.
Diers
and
D. F.
Bocian
, “
Qy-excitation resonance Raman spectra of bacteriochlorophyll observed under fluorescence-free conditions. Implications for cofactor structure in photosynthetic proteins
,”
J. Am. Chem. Soc.
117
,
6629
6630
(
1995
).
35.
M.
Rätsep
,
Z.-L.
Cai
,
J. R.
Reimers
, and
A.
Freiberg
, “
Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a
,”
J. Chem. Phys.
134
,
024506
(
2011
).
36.
G. A.
Fiete
and
E. J.
Heller
, “
Semiclassical theory of coherence and decoherence
,”
Phys. Rev. A
68
,
022112
(
2003
).
37.
J. A.
Cina
, “
Wave-packet interferometry and molecular state reconstruction: Spectroscopic adventures on the left-hand side of the schrödinger equation
,”
Annu. Rev. Phys. Chem.
59
,
319
342
(
2008
).
38.
J.
Seibt
,
V.
Sláma
, and
T.
Mančal
, “
Optical spectroscopy and system–bath interactions in molecular aggregates with full configuration interaction Frenkel exciton model
,”
Chem. Phys.
481
,
218
230
(
2016
), part of special issue on: Quantum Dynamics and Femtosecond Spectroscopy dedicated to Prof. Vladimir Y. Chernyak on the occasion of his 60th birthday.
39.
W. M.
Zhang
,
T.
Meier
,
V.
Chernyak
, and
S.
Mukamel
, “
Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes
,”
J. Chem. Phys.
108
,
7763
7774
(
1998
).
40.
V.
May
and
O.
Kuhn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
John Wiley & and Sons, Ltd.
,
2011
).

Supplementary Material

You do not currently have access to this content.