When a polymer solution undergoes viscoelastic phase separation, the polymer-rich phase forms a network-like structure even if it is a minor phase. This unique feature is induced by polymer dynamics, which are constrained by the temporal entanglement of polymer chains. The fundamental mechanisms of viscoelastic phase separation have already been elucidated by theory and experiments over the past few decades; however, it is not yet well understood how viscoelastic phase separation occurs in multicomponent polymer solutions. Here, we construct a new viscoelastic phase separation model for ternary polymer solutions that consist of a polymer, solvent, and nonsolvent. Our simulation results reveal that a network-like structure is formed in the ternary bulk system through a phase separation mechanism similar to that observed in binary polymer solutions. A difference in dynamics is also found in that the solvent, whose affinity to the polymer is similar to that of the nonsolvent, moves freely between the polymer-rich and water-rich phases during phase separation. These findings are considered important for understanding the phase separation mechanism of ternary mixtures often used in the manufacture of polymeric separation membranes.

1.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
1986
).
2.
H.
Tanaka
,
J. Phys.: Condens. Matter
12
,
R207
(
2000
).
3.
T.
Taniguchi
,
J. Soc. Rheol., Jpn.
32
,
27
(
2004
).
5.
A.
Onuki
and
T.
Taniguchi
,
J. Chem. Phys.
106
,
5761
(
1997
).
6.
T.
Taniguchi
and
A.
Onuki
,
Phys. Rev. Lett.
77
,
4910
(
1996
).
7.
B.
Zhou
and
A. C.
Powell
,
J. Membr. Sci.
268
,
150
(
2006
).
8.
Y.
Mino
,
T.
Ishigami
,
Y.
Kagawa
, and
H.
Matsuyama
,
J. Membr. Sci.
483
,
104
(
2015
).
9.
D. R.
Tree
,
K. T.
Delaney
,
H. D.
Ceniceros
,
T.
Iwama
, and
G. H.
Fredrickson
,
Soft Matter
13
,
3013
(
2017
).
10.
11.
T.
Araki
and
H.
Tanaka
,
Macromolecules
34
,
1953
(
2001
).
12.
R. G.
Larson
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworth-Heinemann
,
2013
).
13.
P. J.
Flory
,
J. Chem. Phys.
10
,
51
(
1942
).
14.
A.
Onuki
,
J. Phys. Soc. Jpn.
59
,
3423
(
1990
).
15.
P.-G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
1979
).
16.
S. T.
Milner
,
Phys. Rev. E
48
,
3674
(
1993
).
17.
K.
Fukawatase
,
K.
Yoshimoto
, and
M.
Ohshima
,
Jpn. J. Appl. Phys., Part 1
54
,
06FE01
(
2015
).
18.
G.
Brown
and
A.
Chakrabarti
,
J. Chem. Phys.
98
,
2451
(
1993
).
19.
A.
Onuki
,
J. Non-Cryst. Solids
172-174
,
1151
(
1994
).
20.
H.
Matsuyama
,
M.
Teramoto
,
R.
Nakatani
, and
T.
Maki
,
J. Appl. Polym. Sci.
74
,
159
(
1999
).
21.
D. R.
Tree
,
T.
Iwama
,
K. T.
Delaney
,
J.
Lee
, and
G. H.
Fredrickson
,
ACS Macro Lett.
7
,
582
(
2018
).
22.
J. U.
Garcia
,
T.
Iwama
,
E. Y.
Chan
,
D. R.
Tree
,
K. T.
Delaney
, and
G. H.
Fredrickson
,
ACS Macro Lett.
9
,
1617
(
2020
).
23.
H.
Tanaka
and
T.
Araki
,
Chem. Eng. Sci.
61
,
2108
(
2006
).
24.
H.
Furukawa
,
Phys. Rev. E
55
,
1150
(
1997
).
25.
E. D.
Siggia
,
Phys. Rev. A
20
,
595
(
1979
).
26.
T.
Koga
,
K.
Kawasaki
,
M.
Takenaka
, and
T.
Hashimoto
,
Physica A
198
,
473
(
1993
).
27.
E.
Scholten
,
L. M. C.
Sagis
, and
E.
van der Linden
,
Macromolecules
38
,
3515
(
2005
).
28.
B. F.
Barton
,
P. D.
Graham
, and
A. J.
McHugh
,
Macromolecules
31
,
1672
(
1998
).
29.
Y.
Takahashi
,
I.
Noda
, and
M.
Nagawasa
,
Macromolecules
18
,
2220
(
1985
).
30.
Y.
Tanaka
,
M.
Umeda
, and
I.
Noda
,
Macromolecules
21
,
2257
(
1988
).
You do not currently have access to this content.