Using isobaric Monte Carlo simulations, we map out the entire phase diagram of a system of hard cylindrical particles of length (L) and diameter (D) using an improved algorithm to identify the overlap condition between two cylinders. Both the prolate L/D > 1 and the oblate L/D < 1 phase diagrams are reported with no solution of continuity. In the prolate L/D > 1 case, we find intermediate nematic N and smectic SmA phases in addition to a low density isotropic I and a high density crystal X phase with I–N-SmA and I-SmA-X triple points. An apparent columnar phase C is shown to be metastable, as in the case of spherocylinders. In the oblate L/D < 1 case, we find stable intermediate cubatic (Cub), nematic (N), and columnar (C) phases with I–N-Cub, N-Cub-C, and I-Cub-C triple points. Comparison with previous numerical and analytical studies is discussed. The present study, accounting for the explicit cylindrical shape, paves the way to more sophisticated models with important biological applications, such as viruses and nucleosomes.

1.
L.
Onsager
, “
The effects of shape on the interaction of colloidal particles
,”
Ann. N. Y. Acad. Sci.
51
,
627
659
(
1949
).
2.
T.
Gibaud
,
E.
Barry
,
M. J.
Zakhary
,
M.
Henglin
,
A.
Ward
,
Y.
Yang
,
C.
Berciu
,
R.
Oldenbourg
,
M. F.
Hagan
,
D.
Nicastro
,
R. B.
Meyer
, and
Z.
Dogic
, “
Reconfigurable self-assembly through chiral control of interfacial tension
,”
Nature
481
,
348
(
2012
).
3.
E.
Grelet
, “
Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses
,”
Phys. Rev. X
4
,
021053
(
2014
).
4.
Y.
Liang
,
Y.
Xie
,
D.
Chen
,
C.
Guo
,
S.
Hou
,
T.
Wen
,
F.
Yang
,
K.
Deng
,
X.
Wu
,
I. I.
Smalyukh
, and
Q.
Liu
, “
Symmetry control of nanorod superlattice driven by a governing force
,”
Nat. Commun.
8
,
1410
(
2017
).
5.
B.
Sung
,
A.
de la Cotte
, and
E.
Grelet
, “
Chirality-controlled crystallization via screw dislocations
,”
Nat. Commun.
9
,
1405
(
2018
).
6.
M. P.
Allen
,
G. T.
Evans
,
D.
Frenkel
, and
B. M.
Mulder
, “
Hard convex body fluids
,”
Adv. Chem. Phys.
86
,
1
166
(
1993
).
7.
C.
Vega
and
S.
Lago
, “
A fast algorithm to evaluate the shortest distance between rods
,”
Comput. Chem.
18
,
55
59
(
1994
).
8.
P.
Bolhuis
and
D.
Frenkel
, “
Tracing the phase boundaries of hard spherocylinders
,”
J. Chem. Phys.
106
,
666
687
(
1997
).
9.
D.
Frenkel
and
B. M.
Mulder
, “
The hard ellipsoid-of-revolution fluid
,”
Mol. Phys.
55
,
1171
1192
(
1985
).
10.
E.
Frezza
,
A.
Ferrarini
,
H. B.
Kolli
,
A.
Giacometti
, and
G.
Cinacchi
, “
The isotropic-to-nematic phase transition in hard helices: Theory and simulation
,”
J. Chem. Phys.
138
,
164906
(
2013
).
11.
K.
Milinković
,
M.
Dennison
, and
M.
Dijkstra
, “
Phase diagram of hard asymmetric dumbbell particles
,”
Phys. Rev. E
87
,
032128
(
2013
).
12.
J. D.
Bernal
and
I.
Fankuchen
, “
X-ray and crystallographic studies of plant virus preparations
,”
J. Gen. Physiol.
25
,
111
165
(
1941
).
13.
X.
Wen
,
R. B.
Meyer
, and
D. L. D.
Caspar
, “
Observation of smectic-A ordering in a solution of rigid-rod-like particles
,”
Phys. Rev. Lett.
63
,
2760
2763
(
1989
).
14.
A.
Leforestier
,
A.
Bertin
,
J.
Dubochet
,
K.
Richter
,
N.
Sartori Blanc
, and
F.
Livolant
, “
Expression of chirality in columnar hexagonal phases or DNA and nucleosomes
,”
C. R. Chim.
11
,
229
244
(
2008
).
15.
F.
Livolant
,
S.
Mangenot
,
A.
Leforestier
,
A.
Bertin
,
M.
de Frutos
,
E.
Raspaud
, and
D.
Durand
, “
Are liquid crystalline properties of nucleosomes involved in chromosome structure and dynamics?
,”
Philos. Trans. R. Soc., A
364
,
2615
2633
(
2006
).
16.
G.
Odriozola
, “
Revisiting the phase diagram of hard ellipsoids
,”
J. Chem. Phys.
136
,
134505
(
2012
).
17.
E.
Grelet
, “
Hexagonal order in crystalline and columnar phases of hard rods
,”
Phys. Rev. Lett.
100
,
168301
(
2008
).
18.
E.
Grelet
and
R.
Rana
, “
From soft to hard rod behavior in liquid crystalline suspensions of sterically stabilized colloidal filamentous particles
,”
Soft Matter
12
,
4621
(
2016
).
19.
S.
Dussi
,
M.
Chiappini
, and
M.
Dijkstra
, “
On the stability and finite-size effects of a columnar phase in single-component systems of hard-rod-like particles
,”
Mol. Phys.
116
,
2792
2805
(
2018
).
20.
H. H.
Wensink
and
H. N. W.
Lekkerkerker
, “
Phase diagram of hard colloidal platelets: A theoretical account
,”
Mol. Phys.
107
,
2111
2118
(
2009
).
21.
R.
Blaak
,
D.
Frenkel
, and
B. M.
Mulder
, “
Do cylinders exhibit a cubatic phase?
,”
J. Chem. Phys.
110
,
11652
11659
(
1999
).
22.
A. G.
Orellana
,
E.
Romani
, and
C.
De Michele
, “
Speeding up Monte Carlo simulation of patchy hard cylinders
,”
Eur. Phys. J. E
41
,
51
(
2018
).
23.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
24.
H. B.
Kolli
,
G.
Cinacchi
,
A.
Ferrarini
, and
A.
Giacometti
, “
Chiral self-assembly of helical particles
,”
Faraday Discuss.
186
,
171
186
(
2016
).
25.
P. D.
Duncan
,
M.
Dennison
,
A. J.
Masters
, and
M. R.
Wilson
, “
Theory and computer simulation for the cubatic phase of cut spheres
,”
Phys. Rev. E
79
,
031702
(
2009
).
26.
Y.
Liu
and
A.
Widmer-Cooper
, “
A versatile simulation method for studying phase behavior and dynamics in colloidal rod and rod-polymer suspensions
,”
J. Chem. Phys.
150
,
244508
(
2019
).
27.
S. C.
McGrother
,
D. C.
Williamson
, and
G.
Jackson
, “
A re-examination of the phase diagram of hard spherocylinders
,”
J. Chem. Phys.
104
,
6755
6771
(
1996
).
28.
J. M.
Polson
and
D.
Frenkel
, “
First-order nematic-smectic phase transition for hard spherocylinders in the limit of infinite aspect ratio
,”
Phys. Rev. E
56
,
R6260
(
1997
).
29.
M.
Marechal
,
S.
Dussi
, and
M.
Dijkstra
, “
Density functional theory and simulations of colloidal triangular prisms
,”
J. Chem. Phys.
146
,
124905
(
2017
).
30.
J. A. C.
Veerman
and
D.
Frenkel
, “
Phase behavior of disklike hard-core mesogens
,”
Phys. Rev. A
45
,
5632
5648
(
1992
).
31.
A.
Repula
,
M.
Oshima Menegon
,
C.
Wu
,
P.
van der Schoot
, and
E.
Grelet
, “
Directing liquid crystalline self-organization of rodlike particles through tunable attractive single tips
,”
Phys. Rev. Lett.
122
,
128008
(
2019
).

Supplementary Material

You do not currently have access to this content.