Nonequilibrium ab initio molecular dynamics (NE-AIMD) simulations are conducted at an air/water interface to elucidate the vibrational energy relaxation path of excited non-hydrogen-bonded (free) OH. A recent time-resolved vibrational sum frequency generation (TR-VSFG) spectroscopy experiment revealed that the relaxation time scales of free OH at the surface of pure water and isotopically diluted water are very similar to each other. In the present study, the dynamics of free OH excited at the surface of pure water and deuterated water are examined with an NE-AIMD simulation, which reproduces the experimentally observed features. The relaxation paths are examined by introducing constraints for the bonds and angles of water molecules relevant to specific vibrational modes in NE-AIMD simulations. In the case of free OH relaxation at the pure water surface, stretching vibrational coupling with the conjugate bond makes a significant contribution to the relaxation path. In the case of the isotopically diluted water surface, the bend (HOD)-stretching (OD) combination band couples with the free OH vibration, generating a relaxation rate similar to that in the pure water case. It is also found that the reorientation of the free OH bond contributes substantially to the relaxation of the free OH vibrational frequency component measured by TR-VSFG spectroscopy.

1.
D.
Eisenberg
and
W.
Kauzmann
,
The Structure and Properties of Water
(
Clarendon Press
,
Oxford
,
1969
).
2.
Y.
Marechal
,
The Hydrogen Bond and the Water Molecule
(
Elsevier
,
Amsterdam
,
2007
).
3.
Q.
Du
,
R.
Superfine
,
E.
Freysz
, and
Y. R.
Shen
, “
Vibrational spectroscopy of water at the vapor/water interface
,”
Phys. Rev. Lett.
70
,
2313
(
1993
).
4.
Y. R.
Shen
,
Fundamentals of Sum-Frequency Spectroscopy
(
Cambridge University Press
,
Cambridge
,
2016
).
5.
H. J.
Bakker
and
J. L.
Skinner
, “
Vibrational spectroscopy as a probe of structure and dynamics in liquid water
,”
Chem. Rev.
110
,
1498
(
2010
).
6.
Y. R.
Shen
, “
Phase-sensitive sum-frequency spectroscopy
,”
Annu. Rev. Phys. Chem.
64
,
129
(
2013
).
7.
S.
Nihonyanagi
,
J. A.
Mondal
,
S.
Yamaguchi
, and
T.
Tahara
, “
Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation
,”
Annu. Rev. Phys. Chem.
64
,
579
(
2013
).
8.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
, “
Direct evidence for orientational flip-flop of water molecules at charged interfaces: A heterodyne-detected vibrational sum frequency generation study
,”
J. Chem. Phys.
130
,
204704
(
2009
).
9.
N.
Ji
,
V.
Ostroverkhov
,
C. S.
Tian
, and
Y. R.
Shen
, “
New information on water interfacial structure revealed by phase-sensitive surface spectroscopy
,”
Phys. Rev. Lett.
100
,
096102
(
2008
).
10.
S.
Nihonyanagi
,
T.
Ishiyama
,
T.
Lee
,
S.
Yamaguchi
,
M.
Bonn
,
A.
Morita
, and
T.
Tahara
, “
Unified molecular view of air/water interface based on experimental and theoretical χ(2) spectra of isotopically diluted water surface
,”
J. Am. Chem. Soc.
133
,
16875
(
2011
).
11.
J. A.
McGuire
and
Y. R.
Shen
, “
Ultrafast vibrational dynamics at water interfaces
,”
Science
313
,
1945
(
2006
).
12.
M.
Smits
,
A.
Ghosh
,
M.
Sterrer
,
M.
Müller
, and
M.
Bonn
, “
Ultrafast vibrational energy transfer between surface and bulk water at the air-water interface
,”
Phys. Rev. Lett.
98
,
098302
(
2007
).
13.
A.
Ghosh
,
M.
Smits
,
J.
Bredenbeck
, and
M.
Bonn
, “
Membrane-bound water is energetically decoupled from nearby bulk water: An ultrafast surface-specific investigation
,”
J. Am. Chem. Soc.
129
,
9608
(
2007
).
14.
A.
Eftekhari-Bafrooei
and
E.
Borguet
, “
Effect of surface charge on the vibrational dynamics of interfacial water
,”
J. Am. Chem. Soc.
131
,
12034
(
2009
).
15.
M.
Bonn
,
H. J.
Bakker
,
A.
Ghosh
,
S.
Yamamoto
,
M.
Sovago
, and
R. K.
Campen
, “
Structural inhomogeneity of interfacial water at lipid monolayers revealed by surface-specific vibrational pump–probe spectroscopy
,”
J. Am. Chem. Soc.
132
,
14971
(
2010
).
16.
C.-S.
Hsieh
,
R. K.
Campen
,
A. C. V.
Verde
,
P.
Bolhuis
,
H.-K.
Nienhuys
, and
M.
Bonn
, “
Ultrafast reorientation of dangling OH groups at the air-water interface using femtosecond vibrational spectroscopy
,”
Phys. Rev. Lett.
107
,
116102
(
2011
).
17.
C.-S.
Hsieh
,
R. K.
Campen
,
M.
Okuno
,
E. H. G.
Backus
,
Y.
Nagata
, and
M.
Bonn
, “
Mechanism of vibrational energy dissipation of free OH groups at the air/water interface
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
18780
(
2013
).
18.
S.
Xiao
,
F.
Figge
,
G.
Stirnemann
,
D.
Laage
, and
J. A.
McGuire
, “
Orientational dynamics of water at an extended hydrophobic interface
,”
J. Am. Chem. Soc.
138
,
5551
(
2016
).
19.
K.
Inoue
,
M.
Ahmed
,
S.
Nihonyanagi
, and
T.
Tahara
, “
Reorientation-induced relaxation of free OH at the air/water interface revealed by ultrafast heterodyne-detected nonlinear spectroscopy
,”
Nat. Commun.
11
,
5344
(
2020
).
20.
W.
Xiong
,
J. E.
Laaser
,
R. D.
Mehlenbacher
, and
M. T.
Zanni
, “
Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
20902
(
2011
).
21.
Z.
Zhang
,
L.
Piatkowski
,
H. J.
Bakker
, and
M.
Bonn
, “
Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy
,”
Nat. Chem.
3
,
888
(
2011
).
22.
P. C.
Singh
,
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
, “
Communication: Ultrafast vibrational dynamics of hydrogen bond network terminated at the air/water interface: A two-dimensional heterodyne-detected vibrational sum frequency generation study
,”
J. Chem. Phys.
139
,
161101
(
2013
).
23.
C.-S.
Hsieh
,
M.
Okuno
,
J.
Hunger
,
E. H. G.
Backus
,
Y.
Nagata
, and
M.
Bonn
, “
Aqueous heterogeneity at the air/water interface revealed by 2D–HD–SFG spectroscopy
,”
Angew. Chem., Int. Ed.
53
,
8146
(
2014
).
24.
J.
Jeon
,
C.-S.
Hsieh
,
Y.
Nagata
,
M.
Bonn
, and
M.
Cho
, “
Hydrogen bonding and vibrational energy relaxation of interfacial water: A full DFT molecular dynamics simulation
,”
J. Chem. Phys.
147
,
044707
(
2017
).
25.
Y.
Nagata
and
S.
Mukamel
, “
Spectral diffusion at the water/lipid interface revealed by two-dimensional fourth-order optical spectroscopy: A classical simulation study
,”
J. Am. Chem. Soc.
133
,
3276
(
2011
).
26.
A.
Verde
,
P.
Bolhuis
, and
R.
Campen
, “
Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface
,”
J. Phys. Chem. B
116
,
9467
(
2012
).
27.
Y.
Ni
,
S. M.
Gruenbaum
, and
J. L.
Skinner
, “
Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
1992
(
2013
).
28.
S.
Roy
,
S. M.
Gruenbaum
, and
J. L.
Skinner
, “
Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. II. Two-dimensional spectra
,”
J. Chem. Phys.
141
,
22D505
(
2014
).
29.
T.
Ishiyama
,
A.
Morita
, and
T.
Tahara
, “
Molecular dynamics study of two-dimensional sum frequency generation spectra at vapor/water interface
,”
J. Chem. Phys.
142
,
212407
(
2015
).
30.
K.
Inoue
,
T.
Ishiyama
,
S.
Nihonyanagi
,
S.
Yamaguchi
,
A.
Morita
, and
T.
Tahara
, “
Efficient spectral diffusion at the air/water interface revealed by femtosecond time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy
,”
J. Phys. Chem. Lett.
7
,
1811
(
2016
).
31.
I.-F. W.
Kuo
and
C.
Mundy
, “
An ab initio molecular dynamics study of the aqueous liquid–vapor interface
,”
Science
303
,
658
(
2004
).
32.
I.-F. W.
Kuo
,
C. J.
Mundy
,
B. L.
Eggimann
,
M. J.
McGrath
,
J. I.
Siepmann
,
B.
Chen
,
J.
Vieceli
, and
D.
Tobias
, “
Structure and dynamics of the aqueous liquid–vapor interface: A comprehensive particle-based simulation study
,”
J. Phys. Chem. B
110
,
3738
(
2006
).
33.
M.
Sulpizi
,
M.
Salanne
,
M.
Sprik
, and
M.-P.
Gaigeot
, “
Vibrational sum frequency generation spectroscopy of the water liquid–vapor interface from density functional theory-based molecular dynamics simulations
,”
J. Phys. Chem. Lett.
4
,
83
(
2013
).
34.
T.
Ohto
,
K.
Usui
,
T.
Hasegawa
,
M.
Bonn
, and
Y.
Nagata
, “
Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity–velocity correlation function
,”
J. Chem. Phys.
143
,
124702
(
2015
).
35.
S.
Pezzotti
,
D. R.
Galimberti
, and
M.-P.
Gaigeot
, “
2D H-bond network as the topmost skin to the air–water interface
,”
J. Phys. Chem. Lett.
8
,
3133
(
2017
).
36.
C.
Liang
,
J.
Jeon
, and
M.
Cho
, “
Ab initio modeling of the vibrational sum-frequency generation spectrum of interfacial water
,”
J. Phys. Chem. Lett.
10
,
1153
(
2019
).
37.
T.
Ishiyama
, “
Existence of weakly interacting OH bond at air/water interface
,”
J. Chem. Phys.
152
,
134703
(
2020
).
38.
Y.
Nagata
,
S.
Yoshimune
,
C.
Hsieh
,
J.
Hunger
, and
M.
Bonn
, “
Ultrafast vibrational dynamics of water disentangled by reverse nonequilibrium ab initio molecular dynamics simulations
,”
Phys. Rev. X
5
,
021002
(
2015
).
39.
J.
Jeon
,
J. H.
Lim
,
S.
Kim
,
H.
Kim
, and
M.
Cho
, “
Nonequilibrium systems: Theory and application to vibrational relaxation of O–D stretch mode of HOD in water
,”
J. Phys. Chem. A
119
,
5356
(
2015
).
40.
C. P.
Lawrence
and
J. L.
Skinner
, “
Vibrational spectroscopy of HOD in liquid D2O. VI. Intramolecular and intermolecular vibrational energy flow
,”
J. Chem. Phys.
119
,
1623
(
2003
).
41.
G.
Tian
, “
Molecular dynamics study on the vibrational energy relaxation of O–D stretch of HOD in liquid H2O
,”
Chem. Phys.
328
,
216
(
2006
).
42.
P.
Phatak
,
I.
Sumner
, and
S. S.
Iyengar
, “
Gauging the flexibility of the active site in soybean lipoxygenase–1 (SLO–1) through an atom-centered density matrix propagation (ADMP) treatment that facilitates the sampling of rare events
,”
J. Phys. Chem. B
116
,
10145
(
2012
).
43.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
, “
cp2k: Atomistic simulations of condensed matter systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
(
2014
).
44.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
, “
Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
(
2005
).
45.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
46.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
47.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
48.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
(
2011
).
49.
D. G. A.
Smith
,
L. A.
Burns
,
K.
Patkowski
, and
C. D.
Sherrill
, “
Revised damping parameters for the D3 dispersion correction to density functional theory
,”
J. Phys. Chem. Lett.
7
,
2197
(
2016
).
50.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
(
1996
).
51.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
(
1983
).
52.
S.
Pronk
,
S.
Páll
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
et al., “
GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
,
845
(
2013
).
53.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
).
54.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
55.
F.
Tang
,
T.
Ohto
,
T.
Hasegawa
,
W. J.
Xie
,
L.
Xu
,
M.
Bonn
, and
Y.
Nagata
, “
Definition of free O–H groups of water at the air–water interface
,”
J. Chem. Theory Comput.
14
,
357
(
2018
).
56.
L. M.
Raff
, “
Projection methods for obtaining intramolecular energy transfer rates from classical trajectory results: Application to 1,2-difluoroethane
,”
J. Chem. Phys.
89
,
5680
(
1988
).
57.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
 et al, Gaussian 09, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2010
.
58.
T.
Ishiyama
,
D.
Terada
, and
A.
Morita
, “
Hydrogen-bonding structure at zwitterionic lipid/water interface
,”
J. Phys. Chem. Lett.
7
,
216
(
2016
).
59.
T.
Ishiyama
,
S.
Shirai
,
T.
Okumura
, and
A.
Morita
, “
Molecular dynamics study of structure and vibrational spectra at zwitterionoic lipid/aqueous KCl, NaCl, and CaCl2 solution interfaces
,”
J. Chem. Phys.
148
,
222801
(
2018
).
60.
M. J.
Gillan
,
D.
Alfè
, and
A.
Michaelides
, “
Perspective: How good is DFT for water?
,”
J. Chem. Phys.
144
,
130901
(
2016
).
61.
M.
Galib
,
T. T.
Duignan
,
Y.
Misteli
,
M. D.
Baer
,
G. K.
Schenter
,
J.
Hutter
, and
C. J.
Mundy
, “
Mass density fluctuations in quantum and classical descriptions of liquid water
,”
J. Chem. Phys.
146
,
244501
(
2017
).
62.
T. F.
Miller
 III
and
D. E.
Manolopoulos
, “
Quantum diffusion in liquid water from ring polymer molecular dynamics
,”
J. Chem. Phys.
123
,
154504
(
2005
).
63.
F.
Paesani
,
W.
Zhang
,
D. A.
Case
,
T. E.
Cheatham
 III
, and
G. A.
Voth
, “
An accurate and simple quantum model for liquid water
,”
J. Chem. Phys.
125
,
184507
(
2006
).
64.
W.
Hu
,
J.
Xie
,
H.
Chau
, and
B.
Si
, “
Evaluation of parameter uncertainties in nonlinear regression using Microsoft Excel Spreadsheet
,”
Environ. Syst. Res.
4
,
4
(
2015
).

Supplementary Material

You do not currently have access to this content.