Water has a rich phase diagram with several crystals, as confirmed by experiments. High-pressure and high-temperature water is of interest for Earth’s mantle and exoplanetary investigations. It is in this region of the phase diagram of water that new plastic crystal phases of water have been revealed via computer simulations by both classical forcefields and ab initio calculations. However, these plastic phases still remain elusive in experiments. Here, we present a complete characterization of the structure, dynamics, and thermodynamics of the computational plastic crystal phases of water using molecular dynamics and the two-phase thermodynamic method and uncover the interplay between them. The relaxation times of different reorientational correlation functions are obtained for the hypothetical body-centered-cubic and face-centered-cubic plastic crystal phases of water at T = 440 K and P = 8 GPa. Results are compared to a high pressure liquid and ice VII phases to improve the understanding of the plastic crystal phases. Entropy results indicate that the fcc crystal is more stable compared to the bcc structure under the studied conditions.

1.
V.
Rozsa
,
D.
Pan
,
F.
Giberti
, and
G.
Galli
, “
Ab initio spectroscopy and ionic conductivity of water under earth mantle conditions
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
6952
6957
(
2018
).
2.
J. P.
Poirier
, “
Rheology of ices: A key to the tectonics of the ice moons of Jupiter and Saturn
,”
Nature
299
,
683
687
(
1982
).
3.
P. C.
Myint
,
L. X.
Benedict
, and
J. L.
Belof
, “
Free energy models for ice VII and liquid water derived from pressure, entropy, and heat capacity relations
,”
J. Chem. Phys.
147
,
084505
(
2017
).
4.
Z.
Futera
,
J. S.
Tse
, and
N. J.
English
, “
Possibility of realizing superionic ice VII in external electric fields of planetary bodies
,”
Sci. Adv.
6
,
eaaz2915
(
2020
).
5.
Y.
Takii
,
K.
Koga
, and
H.
Tanaka
, “
A plastic phase of water from computer simulation
,”
J. Chem. Phys.
128
,
204501
(
2008
).
6.
K.
Himoto
,
M.
Matsumoto
, and
H.
Tanaka
, “
Lattice- and network-structure in plastic ice
,”
Phys. Chem. Chem. Phys.
13
,
19876
19881
(
2011
).
7.
J. L.
Aragones
,
M. M.
Conde
,
E. G.
Noya
, and
C.
Vega
, “
The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: The appearance of a plastic crystal phase
,”
Phys. Chem. Chem. Phys.
11
,
543
555
(
2009
).
8.
J. L.
Aragones
and
C.
Vega
, “
Plastic crystal phases of simple water models
,”
J. Chem. Phys.
130
,
244504
(
2009
).
9.
J.-A.
Hernandez
and
R.
Caracas
, “
Proton dynamics and the phase diagram of dense water ice
,”
J. Chem. Phys.
148
,
214501
(
2018
).
10.
Y.
Adachi
and
K.
Koga
, “
Structure and phase behavior of high-density ice from molecular-dynamics simulations with the ReaxFF potential
,”
J. Chem. Phys.
153
,
114501
(
2020
).
11.
M.
Hirata
,
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
, “
Phase diagram of TIP4P/2005 water at high pressure
,”
Langmuir
33
,
11561
11569
(
2017
).
12.
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
, “
Phase diagrams of TIP4P/2005, SPC/E, and TIP5P water at high pressure
,”
J. Phys. Chem. B
122
,
7718
7725
(
2018
).
13.
L.
Bove
,
S.
Klotz
,
T.
Strässle
,
M.
Koza
,
J.
Teixeira
, and
A.
Saitta
, “
Translational and rotational diffusion in water in the Gigapascal range
,”
Phys. Rev. Lett.
111
,
185901
(
2013
).
14.
A. K.
Soper
and
M. A.
Ricci
, “
Structures of high-density and low-density water
,”
Phys. Rev. Lett.
84
,
2881
(
2000
).
15.
B.
Hess
,
C.
Kutzner
,
D.
Van Der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
16.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
17.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
18.
D. J.
Evans
and
B. L.
Holian
, “
The Nose–Hoover thermostat
,”
J. Chem. Phys.
83
,
4069
4074
(
1985
).
19.
M.
Parrinello
and
A.
Rahman
, “
A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
20.
See https://gcm.upc.edu/en/members/luis-carlos/angula/ANGULA for program can be downloaded from online; accessed 28 May 2020.
21.
L. C.
Pardo
,
A.
Henao
,
S.
Busch
,
E.
Guàrdia
, and
J. L.
Tamarit
, “
A continuous mixture of two different dimers in liquid water
,”
Phys. Chem. Chem. Phys.
16
,
24479
24483
(
2014
).
22.
A.
Henao
,
S.
Busch
,
E.
Guàrdia
,
J. L.
Tamarit
, and
L. C.
Pardo
, “
The structure of liquid water beyond the first hydration shell
,”
Phys. Chem. Chem. Phys.
18
,
19420
19425
(
2016
).
23.
A.
Henao
, “
Local ordering and dynamics of plastic crystals
,” Ph.D. thesis,
Universitat Politècnica de Catalunya
,
2017
.
24.
U.
Ranieri
,
P.
Giura
,
F. A.
Gorelli
,
M.
Santoro
,
S.
Klotz
,
P.
Gillet
,
L.
Paolasini
,
M. M.
Koza
, and
L. E.
Bove
, “
Dynamical crossover in hot dense water: The hydrogen bond role
,”
J. Phys. Chem. B
120
,
9051
9059
(
2016
).
25.
N.
Meyer
,
V.
Piquet
,
J.-F.
Wax
,
H.
Xu
, and
C.
Millot
, “
Rotational and translational dynamics of the SPC/E water model
,”
J. Mol. Liq.
275
,
895
908
(
2019
).
26.
P.
Friant-Michel
,
J.-F.
Wax
,
N.
Meyer
,
H.
Xu
, and
C.
Millot
, “
Translational and rotational diffusion in liquid water at very high pressure: A simulation study
,”
J. Phys. Chem. B
123
,
10025
10035
(
2019
).
27.
D.
van der Spoel
,
P. J.
van Maaren
, and
H. J. C.
Berendsen
, “
A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field
,”
J. Chem. Phys.
108
,
10220
10230
(
1998
).
28.
D.
Laage
, “
Reinterpretation of the liquid water quasi-elastic neutron scattering spectra based on a nondiffusive jump reorientation mechanism
,”
J. Phys. Chem. B
113
,
2684
2687
(
2009
).
29.
I.
Skarmoutsos
,
S.
Mossa
, and
E.
Guardia
, “
The effect of polymorphism on the structural, dynamic and dielectric properties of plastic crystal water: A molecular dynamics simulation perspective
,”
J. Chem. Phys.
150
,
124506
(
2019
).
30.
S.-T.
Lin
,
M.
Blanco
, and
W. A.
Goddard
 III
, “
The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids
,”
J. Chem. Phys.
119
,
11792
11805
(
2003
).
31.
T. A.
Pascal
,
S.-T.
Lin
, and
W. A.
Goddard
 III
, “
Thermodynamics of liquids: Standard molar entropies and heat capacities of common solvents from 2PT molecular dynamics
,”
Phys. Chem. Phem. Phys.
13
,
169
181
(
2011
).
32.
M. A.
Caro
,
T.
Laurila
, and
O.
Lopez-Acevedo
, “
Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations
,”
J. Chem. Phys.
145
,
244504
(
2016
).
33.
T. A.
Pascal
,
D.
Schärf
,
Y.
Jung
, and
T. D.
Kühne
, “
On the absolute thermodynamics of water from computer simulations: A comparison of first-principles molecular dynamics, reactive and empirical force fields
,”
J. Chem. Phys.
137
,
244507
(
2012
).
34.
A.
Henao
,
G. N.
Ruiz
,
N.
Steinke
,
S.
Cerveny
,
R.
Macovez
,
E.
Guàrdia
,
S.
Busch
,
S. E.
McLain
,
C. D.
Lorenz
, and
L. C.
Pardo
, “
On the microscopic origin of the cryoprotective effect in lysine solutions
,”
Phys. Chem. Chem. Phys.
22
,
6919
6927
(
2020
).

Supplementary Material

You do not currently have access to this content.