Recent experiments and theory suggest that ground state properties and reactivity of molecules can be modified when placed inside a nanoscale cavity, giving rise to strong coupling between vibrational modes and the quantized cavity field. This is commonly thought to be caused either by a cavity-distorted Born–Oppenheimer ground state potential or by the formation of light–matter hybrid states, vibrational polaritons. Here, we systematically study the effect of a cavity on ground state properties and infrared spectra of single molecules, considering vibration-cavity coupling strengths from zero up to the vibrational ultrastrong coupling regime. Using single-mode models for Li–H and O–H stretch modes and for the NH3 inversion mode, respectively, a single cavity mode in resonance with vibrational transitions is coupled to position-dependent molecular dipole functions. We address the influence of the cavity mode on polariton ground state energies, equilibrium bond lengths, dissociation energies, activation energies for isomerization, and on vibro-polaritonic infrared spectra. In agreement with earlier work, we observe all mentioned properties being strongly affected by the cavity, but only if the dipole self-energy contribution in the interaction Hamiltonian is neglected. When this term is included, these properties do not depend significantly on the coupling anymore. Vibro-polaritonic infrared spectra, in contrast, are always affected by the cavity mode due to the formation of excited vibrational polaritons. It is argued that the quantized nature of vibrational polaritons is key to not only interpreting molecular spectra in cavities but also understanding the experimentally observed modification of molecular reactivity in cavities.

1.
D. P.
Craig
and
T.
Thirunmachandran
,
Molecular Quantum Electrodynamics
(
Dover Ed.
,
Mineola, NY
,
1998
).
2.
T. W.
Ebbesen
,
Acc. Chem. Res.
49
,
2403
(
2016
).
3.
A. F.
Kockum
,
A.
Miranowicz
,
S.
De Liberato
,
S.
Savasta
, and
F.
Nori
,
Nat. Rev. Phys.
1
,
19
(
2019
).
4.
J.
Galego
,
F. J.
Garcia-Vidal
, and
J.
Feist
,
Phys. Rev. X
5
,
041022
(
2015
).
5.
J.
Fregoni
,
G.
Granucci
,
E.
Coccia
,
M.
Persico
, and
S.
Corni
,
Nat. Commun.
9
,
4688
(
2018
).
6.
J. F.
Triana
,
D.
Peláez
, and
J. L.
Sanz-Vicario
,
J. Phys. Chem. A
122
,
2266
(
2018
).
7.
C.
Schäfer
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
4883
(
2019
).
8.
O.
Vendrell
,
Chem. Phys.
509
,
55
(
2018
).
9.
I. S.
Ulusoy
,
J. A.
Gomez
, and
O.
Vendrell
,
J. Phys. Chem. A
123
,
8832
(
2019
).
10.
I. S.
Ulusoy
and
O.
Vendrell
,
J. Chem. Phys.
153
,
044108
(
2020
).
11.
I.
Ulusoy
,
J. A.
Gomez
, and
O.
Vendrell
,
J. Chem. Phys.
153
,
244107
(
2020
).
12.
A.
Semenov
and
A.
Nitzan
,
J. Chem. Phys.
150
,
174122
(
2019
).
13.
A.
Thomas
,
J.
George
,
A.
Shalabney
,
M.
Dryzhakov
,
S. J.
Varma
,
J.
Moran
,
T.
Chervy
,
X.
Zhong
,
E.
Devaux
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
,
Angew. Chem., Int. Ed.
55
,
11462
(
2016
).
14.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
,
Science
363
,
615
(
2019
).
15.
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
H.
Hiura
,
C.
Genet
, and
T. W.
Ebbesen
,
Phys. Rev. Lett.
117
,
153601
(
2016
).
16.
J.
Flick
,
H.
Appel
,
M.
Ruggenthaler
, and
A.
Rubio
,
J. Chem. Theory Comput.
13
,
1616
(
2017
).
17.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
3026
(
2017
).
18.
J.
Galego
,
C.
Climent
,
F. J.
Garcia-Vidal
, and
J.
Feist
,
Phys. Rev. X
9
,
021057
(
2019
).
19.
J. F.
Triana
,
F. J.
Hernández
, and
F.
Herrera
,
J. Chem. Phys.
152
,
234111
(
2020
).
20.
J.
Triana
and
F.
Herrera
, chemRxiv:12702419.v1 (
2020
).
21.
F. J.
Hernández
and
F.
Herrera
,
J. Chem. Phys.
151
,
144116
(
2019
).
22.
S.
Banerjee
and
P.
Saalfrank
,
Phys. Chem. Chem. Phys.
16
,
144
(
2014
).
23.
C.
Schäfer
,
M.
Ruggenthaler
, and
A.
Rubio
,
Phys. Rev. A
98
,
043801
(
2018
).
24.
T. S.
Haugland
,
E.
Ronca
,
E. F.
Kjønstad
,
A.
Rubio
, and
H.
Koch
,
Phys. Rev. X
10
,
041043
(
2020
).
25.
M.
Ruggenthaler
,
J.
Flick
,
C.
Pellegrini
,
H.
Appel
,
I. V.
Tokatly
, and
A.
Rubio
,
Phys. Rev. A
90
,
012508
(
2014
).
26.
J.
Flick
,
D. M.
Welakuh
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
,
ACS Photonics
6
,
2757
(
2019
).
27.
E. T.
Jaynes
and
F. W.
Cummings
,
Proc. IEEE
51
,
89
(
1963
).
28.
M.
Tavis
and
F. W.
Cummings
,
Phys. Rev.
188
,
692
(
1969
).
29.
T. E.
Li
,
J. E.
Subotnik
, and
A.
Nitzan
,
Proc. Natl. Acad. Sci. U. S. A.
117
,
18324
(
2020
).
30.
V.
Rokaj
,
D. M.
Welakuh
,
M.
Ruggenthaler
, and
A.
Rubio
,
J. Phys. B: At., Mol. Opt. Phys.
51
,
034005
(
2018
).
31.
E. J.
Heller
,
J. Chem. Phys.
68
,
3891
(
1978
).
32.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
33.
U.
Manthe
,
H. D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
34.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
35.
H.-D.
Meyer
and
G. A.
Worth
,
Theor. Chem. Acc.
109
,
251
(
2003
).
36.
H.-D.
Meyer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
351
(
2012
).
37.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
, and
H.-D.
Meyer
, The MCTDH Package, version 8.2,
2000
,
H.-D.
Meyer
, version 8.3,
2002
, version 8.4,
2007
,
O.
Vendrell
and
H.-D.
Meyer
, version 8.5,
2013
, version 8.5 contains the MLMCTDH algorithm, see http://mctdh.uni-hd.de, used versions: 8.5.12,
2020
.
38.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford CT
,
2016
.
39.
M. S.
Arruda
,
F. V.
Prudente
, and
A. M.
Maniero
,
Rev. Mex. Fis. S
56
,
51
(
2010
).
40.
M. V.
Korolkov
,
G. K.
Paramonov
, and
B.
Schmidt
,
J. Chem. Phys.
105
,
1862
(
1996
).
41.
G. K.
Paramonov
and
P.
Saalfrank
,
Phys. Rev. A
79
,
013415
(
2009
).
42.
M. F.
Mannig
,
J. Chem. Phys.
3
,
136
(
1935
).
43.
P.
Saalfrank
,
S.
Holloway
, and
G. R.
Darling
,
J. Chem. Phys.
103
,
6720
(
1995
).
44.
CRC Handbook of Chemistry and Physics
, edited by
D. R.
Lide
(
CRC Press/Taylor & Francis
,
Boca Raton, Fl
,
2009
).
45.
R.
Marquardt
,
M.
Quack
,
I.
Thanopulos
, and
D.
Luckhaus
,
J. Chem. Phys.
119
,
10724
(
2003
).
46.
K. K.
Irikura
,
J. Phys. Chem. Ref. Data
36
,
389
(
2007
).
47.
V.
Spirko
,
J. Mol. Spectrosc.
101
,
30
(
1983
).
48.
C.
Schäfer
,
M.
Ruggenthaler
,
V.
Rokaj
, and
A.
Rubio
,
ACS Photonics
7
,
975
(
2020
).
49.
A.
Mandal
,
T. D.
Krauss
, and
P.
Huo
, chemRxiv:11983806.v1 (
2020
).
50.
J.
Lather
,
P.
Bhatt
,
A.
Thomas
,
T. W.
Ebbesen
, and
J.
George
,
Angew. Chem., Int. Ed.
58
,
10635
(
2019
).
51.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
,
Nat. Commun.
10
,
4685
(
2019
).
52.
J. A.
Campos-Gonzalez-Angulo
and
J.
Yuen-Zhou
,
J. Chem. Phys.
152
,
161101
(
2020
).
53.
N. T.
Phuc
,
P. Q.
Trung
, and
A.
Ishizaki
,
Sci. Rep.
10
,
7318
(
2020
).
54.
X.
Li
,
A.
Mandal
, and
P.
Huo
,
Nat. Commun.
12
,
1315
(
2021
).
55.
H.
Eyring
,
Chem. Rev.
17
,
65
(
1935
).
You do not currently have access to this content.