The effect of surface atom vibrations on H2 scattering from a Cu(111) surface at different temperatures is being investigated for hydrogen molecules in their rovibrational ground state (v = 0, j = 0). We assume weakly correlated interactions between molecular degrees of freedom and surface modes through a Hartree product type wavefunction. While constructing the six-dimensional effective Hamiltonian, we employ (a) a chemically accurate potential energy surface according to the static corrugation model [M. Wijzenbroek and M. F. Somers, J. Chem. Phys. 137, 054703 (2012)]; (b) normal mode frequencies and displacement vectors calculated with different surface atom interaction potentials within a cluster approximation; and (c) initial state distributions for the vibrational modes according to Bose–Einstein probability factors. We carry out 6D quantum dynamics with the so-constructed effective Hamiltonian and analyze sticking and state-to-state scattering probabilities. The surface atom vibrations affect the chemisorption dynamics. The results show physically meaningful trends for both reaction and scattering probabilities compared to experimental and other theoretical results.

1.
G.
Anger
,
A.
Winkler
, and
K. D.
Rendulic
,
Surf. Sci.
220
,
1
(
1989
).
2.
E.
Watts
and
G. O.
Sitz
,
J. Chem. Phys.
114
,
4171
(
2001
).
3.
H. A.
Michelsen
,
C. T.
Rettner
, and
D. J.
Auerbach
,
Surf. Sci.
272
,
65
(
1992
).
4.
C. T.
Rettner
,
H. A.
Michelsen
, and
D. J.
Auerbach
,
Faraday Discuss.
96
,
17
(
1993
).
5.
C. T.
Rettner
,
D. J.
Auerbach
, and
H. A.
Michelsen
,
Phys. Rev. Lett.
68
,
1164
(
1992
).
6.
H. F.
Berger
,
M.
Leisch
,
A.
Winkler
, and
K. D.
Rendulic
,
Chem. Phys. Lett.
175
,
425
(
1990
).
7.
H.
Hou
,
S. J.
Gulding
,
C. T.
Rettner
,
A. M.
Wodtke
, and
D. J.
Auerbach
,
Science
277
,
80
(
1997
).
8.
M. J.
Murphy
and
A.
Hodgson
,
J. Chem. Phys.
108
,
4199
(
1998
).
9.
R. C.
Mowrey
,
G. J.
Kroes
, and
E. J.
Baerends
,
J. Chem. Phys.
108
,
6906
(
1998
).
10.
Z. S.
Wang
,
G. R.
Darling
, and
S.
Holloway
,
Phys. Rev. Lett.
87
,
226102
(
2001
).
11.
S.
Nave
and
B.
Jackson
,
Phys. Rev. Lett.
98
,
173003
(
2007
).
12.
A. K.
Tiwari
,
S.
Nave
, and
B.
Jackson
,
Phys. Rev. Lett.
103
,
253201
(
2009
).
13.
A. K.
Tiwari
,
S.
Nave
, and
B.
Jackson
,
J. Chem. Phys.
132
,
134702
(
2010
).
14.
G. D.
Billing
,
Phys. Chem. Chem. Phys.
4
,
2865
(
2002
).
15.
C.
Díaz
,
E.
Pijper
,
R. A.
Olsen
,
H. F.
Busnengo
,
D. J.
Auerbach
, and
G. J.
Kroes
,
Science
326
,
832
(
2009
).
16.
M.
Bonfanti
,
C.
Díaz
,
M. F.
Somers
, and
G. J.
Kroes
,
Phys. Chem. Chem. Phys.
13
,
4552
(
2011
).
17.
E.
Watts
,
G. O.
Sitz
,
D. A.
McCormack
,
G. J.
Kroes
,
R. A.
Olsen
,
J. A.
Groeneveld
,
J. N. P.
Van Stralen
,
E. J.
Baerends
, and
R. C.
Mowrey
,
J. Chem. Phys.
114
,
495
(
2001
).
18.
M.
Hand
and
J.
Harris
,
J. Chem. Phys.
92
,
7610
(
1990
).
19.
A. C.
Luntz
and
M.
Persson
,
J. Chem. Phys.
123
,
074704-1
(
2005
).
20.
M.
Dohle
and
P.
Saalfrank
,
Surf. Sci.
373
,
95
(
1997
).
21.
F.
Lüder
,
M.
Nest
, and
P.
Saalfrank
,
Theor. Chem. Acc.
127
,
183
(
2010
).
22.
J.
Dai
and
J. C.
Light
,
J. Chem. Phys.
108
,
7816
(
1998
).
23.
J.
Dai
and
J. C.
Light
,
J. Chem. Phys.
107
,
1676
(
1997
).
24.
M. F.
Somers
,
S. M.
Kingma
,
E.
Pijper
,
G. J.
Kroes
, and
D.
Lemoine
,
Chem. Phys. Lett.
360
,
390
(
2002
).
25.
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
112
,
3884
(
2000
).
26.
T.
Sahoo
,
S.
Sardar
, and
S.
Adhikari
,
Phys. Chem. Chem. Phys.
13
,
10100
(
2011
).
27.
T.
Sahoo
,
S.
Sardar
,
P.
Mondal
,
B.
Sarkar
, and
S.
Adhikari
,
J. Phys. Chem. A
115
,
5256
(
2011
).
28.
T.
Sahoo
,
S.
Sardar
, and
S.
Adhikari
,
Phys. Scr.
84
,
028105-1
(
2011
).
29.
T.
Sahoo
,
S.
Mukherjee
, and
S.
Adhikari
,
J. Chem. Phys.
136
,
084306-1
(
2012
).
30.
M.
Wijzenbroek
and
M. F.
Somers
,
J. Chem. Phys.
137
,
054703
(
2012
).
31.
P.
Spiering
,
M.
Wijzenbroek
, and
M. F.
Somers
,
J. Chem. Phys.
149
,
234702
(
2018
).
32.
F.
Nattino
,
A.
Genova
,
M.
Guijt
,
A. S.
Muzas
,
C.
Díaz
,
D. J.
Auerbach
, and
G.-J.
Kroes
,
J. Chem. Phys.
141
,
124705
(
2014
).
33.
C. T.
Rettner
,
H. A.
Michelsen
, and
D. J.
Auerbach
,
J. Chem. Phys.
102
,
4625
(
1995
).
34.
C. T.
Rettner
,
H. A.
Michelsen
, and
D. J.
Auerbach
,
Chem. Phys.
175
,
157
(
1993
).
35.
H. A.
Michelsen
,
C. T.
Rettner
,
D. J.
Auerbach
, and
R. N.
Zare
,
J. Chem. Phys.
98
,
8294
(
1993
).
36.
H. A.
Michelsen
and
D. J.
Auerbach
,
J. Chem. Phys.
94
,
7502
(
1991
).
37.
S.
Kaufmann
,
Q.
Shuai
,
D. J.
Auerbach
,
D.
Schwarzer
, and
A. M.
Wodtke
,
J. Chem. Phys.
148
,
194703
(
2018
).
38.
G.
Wiesenekker
,
G. J.
Kroes
, and
E. J.
Baerends
,
J. Chem. Phys.
104
,
7344
(
1996
).
39.
C.
Díaz
,
R. A.
Olsen
,
D. J.
Auerbach
, and
G. J.
Kroes
,
Phys. Chem. Chem. Phys.
12
,
6499
(
2010
).
40.
G.-J.
Kroes
,
Phys. Chem. Chem. Phys.
14
,
14966
(
2012
).
41.
A.
Mondal
,
M.
Wijzenbroek
,
M.
Bonfanti
,
C.
Díaz
, and
G.-J.
Kroes
,
J. Phys. Chem. A
117
,
8770
(
2013
).
42.
B.
Jiang
and
H.
Guo
,
J. Chem. Phys.
139
,
054112
(
2013
).
43.
B.
Jiang
and
H.
Guo
,
J. Chem. Phys.
141
,
034109
(
2014
).
44.
B.
Jiang
,
J.
Li
, and
H.
Guo
,
Int. Rev. Phys. Chem.
35
,
479
(
2016
).
45.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
46.
B.
Kolb
,
X.
Luo
,
X.
Zhou
,
B.
Jiang
, and
H.
Guo
,
J. Phys. Chem. Lett.
8
,
666
(
2017
).
47.
Q.
Liu
,
X.
Zhou
,
L.
Zhou
,
Y.
Zhang
,
X.
Luo
,
H.
Guo
, and
B.
Jiang
,
J. Phys. Chem. C
122
,
1761
(
2018
).
48.
B.
Jiang
and
H.
Guo
,
J. Chem. Phys.
144
,
091101
(
2016
).
49.
Y.
Zhang
,
X.
Zhou
, and
B.
Jiang
,
J. Phys. Chem. Lett.
10
,
1185
(
2019
).
50.
M. d.
Cueto
,
X.
Zhou
,
L.
Zhou
,
Y.
Zhang
,
B.
Jiang
, and
H.
Guo
,
J. Phys. Chem. C
124
,
5174
(
2020
).
51.
R.
Yin
,
Y.
Zhang
, and
B.
Jiang
,
J. Phys. Chem. Lett.
10
,
5969
(
2019
).
52.
K.
Shakouri
,
J.
Behler
,
J.
Meyer
, and
G.-J.
Kroes
,
J. Phys. Chem. Lett.
8
,
2131
(
2017
).
53.
N.
Gerrits
,
K.
Shakouri
,
J.
Behler
, and
G.-J.
Kroes
,
J. Phys. Chem. Lett.
10
,
1763
(
2019
).
54.
L.
Zhu
,
Y.
Zhang
,
L.
Zhang
,
X.
Zhou
, and
B.
Jiang
,
Phys. Chem. Chem. Phys.
22
,
13958
(
2020
).
55.
Y.
Zhang
,
C.
Hu
, and
B.
Jiang
,
J. Phys. Chem. Lett.
10
,
4962
(
2019
).
56.
B.
Jiang
and
H.
Guo
,
Phys. Chem. Chem. Phys.
16
,
24704
(
2014
).
57.
B.
Jiang
,
X.
Hu
,
S.
Lin
,
D.
Xie
, and
H.
Guo
,
Phys. Chem. Chem. Phys.
17
,
23346
(
2015
).
58.
T.
Liu
,
B.
Fu
, and
D. H.
Zhang
,
J. Chem. Phys.
139
,
184705
(
2013
).
59.
T.
Liu
,
B.
Fu
, and
D. H.
Zhang
,
J. Chem. Phys.
140
,
144701
(
2014
).
60.
T.
Liu
,
B.
Fu
, and
D. H.
Zhang
,
J. Chem. Phys.
151
,
144707
(
2019
).
61.
H. F.
Busnengo
,
A.
Salin
, and
W.
Dong
,
J. Chem. Phys.
112
,
7641
(
2000
).
62.
N.
Pineau
,
H. F.
Busnengo
,
J. C.
Rayez
, and
A.
Salin
,
J. Chem. Phys.
122
,
214705
(
2005
).
63.
R. A.
Olsen
,
H. F.
Busnengo
,
A.
Salin
,
M. F.
Somers
,
G. J.
Kroes
, and
E. J.
Baerends
,
J. Chem. Phys.
116
,
3841
(
2002
).
64.
F.
Nattino
,
C.
Díaz
,
B.
Jackson
, and
G.-J.
Kroes
,
Phys. Rev. Lett.
108
,
236104
(
2012
).
65.
G.-J.
Kroes
,
J. Phys. Chem. Lett.
6
,
4106
(
2015
).
66.
M.
Dohle
,
P.
Saalfrank
, and
T.
Uzer
,
J. Chem. Phys.
108
,
4226
(
1998
).
67.
M.
Dohle
,
P.
Saalfrank
, and
T.
Uzer
,
Surf. Sci.
409
,
37
(
1998
).
68.
P.
Saalfrank
and
W. H.
Miller
,
Surf. Sci.
303
,
206
(
1994
).
69.
H. F.
Busnengo
,
W.
Dong
,
P.
Sautet
, and
A.
Salin
,
Phys. Rev. Lett.
87
,
127601
(
2001
).
70.
S.
Nave
and
B.
Jackson
,
J. Chem. Phys.
127
,
224702
(
2007
).
71.
S.
Mandal
,
T.
Sahoo
,
S.
Ghosh
, and
S.
Adhikari
,
Mol. Phys.
113
,
3042
(
2015
).
72.
S.
Mandal
,
S.
Ghosh
,
S. S.
Sardar
, and
S.
Adhikari
,
Int. Rev. Phys. Chem.
37
,
607
(
2019
).
73.
S.
Mandal
,
T.
Sahoo
,
S.
Ghosh
, and
S.
Adhikari
,
J. Theor. Comput. Chem.
14
,
1550028
(
2015
).
74.
T. N.
Truong
,
D. G.
Truhlar
, and
B. C.
Garrett
,
J. Phys. Chem.
93
,
8227
(
1989
).
75.
P.
Pechukas
and
J. C.
Light
,
J. Chem. Phys.
44
,
3897
(
1966
).
76.
M. D.
Feit
,
J. A.
Fleck
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
).
77.
S. M.
Folies
,
M. I.
Baskes
, and
M. S.
Daw
,
Phys. Rev. B
33
,
7983
(
1986
).

Supplementary Material

You do not currently have access to this content.